These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 22211939)

  • 1. Identification of Chromera velia by fluorescence in situ hybridization.
    Morin-Adeline V; Foster C; Slapeta J
    FEMS Microbiol Lett; 2012 Mar; 328(2):144-9. PubMed ID: 22211939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined amplicon pyrosequencing assays reveal presence of the apicomplexan "type-N" (cf. Gemmocystis cylindrus) and Chromera velia on the Great Barrier Reef, Australia.
    Slapeta J; Linares MC
    PLoS One; 2013; 8(9):e76095. PubMed ID: 24098768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphical representation of ribosomal RNA probe accessibility data using ARB software package.
    Kumar Y; Westram R; Behrens S; Fuchs B; Glöckner FO; Amann R; Meier H; Ludwig W
    BMC Bioinformatics; 2005 Mar; 6():61. PubMed ID: 15777482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased growth and pigment content of Chromera velia in mixotrophic culture.
    Foster C; Portman N; Chen M; Šlapeta J
    FEMS Microbiol Ecol; 2014 Apr; 88(1):121-8. PubMed ID: 24372150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromera velia is endosymbiotic in larvae of the reef corals Acropora digitifera and A. tenuis.
    Cumbo VR; Baird AH; Moore RB; Negri AP; Neilan BA; Salih A; van Oppen MJ; Wang Y; Marquis CP
    Protist; 2013 Mar; 164(2):237-44. PubMed ID: 23063731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromera velia: The Missing Link in the Evolution of Parasitism.
    Weatherby K; Carter D
    Adv Appl Microbiol; 2013; 85():119-44. PubMed ID: 23942150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence in situ hybridization with specific oligonucleotide rRNA probes distinguishes the sibling species Stylonychia lemnae and Stylonychia mytilus (Ciliophora, Spirotrichea).
    Schmidt SL; Bernhard D; Schlegel M; Fried J
    Protist; 2006 Feb; 157(1):21-30. PubMed ID: 16427805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of ciliate identification and quantification: a new protocol for fluorescence in situ hybridization (FISH) in combination with silver stain techniques.
    Fried J; Ludwig W; Psenner R; Schleifer KH
    Syst Appl Microbiol; 2002 Dec; 25(4):555-71. PubMed ID: 12583717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentiation of two very similar glaucomid ciliate morphospecies (Ciliophora, Tetrahymenida) by fluorescence in situ hybridization with 18S rRNA targeted oligonucleotide probes.
    Fried J; Foissner W
    J Eukaryot Microbiol; 2007; 54(4):381-7. PubMed ID: 17669165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separation and identification of lipids in the photosynthetic cousins of Apicomplexa Chromera velia and Vitrella brassicaformis.
    Tomčala A; Kyselová V; Schneedorferová I; Opekarová I; Moos M; Urajová P; Kručinská J; Oborník M
    J Sep Sci; 2017 Sep; 40(17):3402-3413. PubMed ID: 28675643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An update and optimisation of oligonucleotide probes targeting methanogenic Archaea for use in fluorescence in situ hybridisation (FISH).
    Crocetti G; Murto M; Björnsson L
    J Microbiol Methods; 2006 Apr; 65(1):194-201. PubMed ID: 16126291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of nutrient concentration and salinity on immotile-motile transformation of Chromera velia.
    Guo JT; Weatherby K; Carter D; Slapeta J
    J Eukaryot Microbiol; 2010; 57(5):444-6. PubMed ID: 20662995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sterol composition and biosynthetic genes of the recently discovered photosynthetic alveolate, Chromera velia (chromerida), a close relative of apicomplexans.
    Leblond JD; Dodson J; Khadka M; Holder S; Seipelt RL
    J Eukaryot Microbiol; 2012; 59(3):191-7. PubMed ID: 22313428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques.
    Amann R; Fuchs BM
    Nat Rev Microbiol; 2008 May; 6(5):339-48. PubMed ID: 18414500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of FISH technology for microbiological analysis: current state and prospects.
    Bottari B; Ercolini D; Gatti M; Neviani E
    Appl Microbiol Biotechnol; 2006 Dec; 73(3):485-94. PubMed ID: 17051413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deciphering the nature of the coral-Chromera association.
    Mohamed AR; Cumbo VR; Harii S; Shinzato C; Chan CX; Ragan MA; Satoh N; Ball EE; Miller DJ
    ISME J; 2018 Mar; 12(3):776-790. PubMed ID: 29321691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of iron-depositing Pedomicrobium species in native biofilms from the Odertal National Park by a new, specific FISH probe.
    Braun B; Richert I; Szewzyk U
    J Microbiol Methods; 2009 Oct; 79(1):37-43. PubMed ID: 19638289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility.
    Stoecker K; Dorninger C; Daims H; Wagner M
    Appl Environ Microbiol; 2010 Feb; 76(3):922-6. PubMed ID: 19966029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ploidy and Number of Chromosomes in the Alveolate Alga Chromera velia.
    Vazač J; Füssy Z; Hladová I; Killi S; Oborník M
    Protist; 2018 Feb; 169(1):53-63. PubMed ID: 29367153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the in situ accessibility of small subunit ribosomal RNA of members of the domains Bacteria and Eukarya to oligonucleotide probes.
    Okten HE; Yilmaz LS; Noguera DR
    Syst Appl Microbiol; 2012 Dec; 35(8):485-95. PubMed ID: 22264799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.