These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 22211939)

  • 21. Fluorescence in situ hybridization for the identification of environmental microbes.
    Wendeberg A
    Cold Spring Harb Protoc; 2010 Jan; 2010(1):pdb.prot5366. PubMed ID: 20150125
    [No Abstract]   [Full Text] [Related]  

  • 22. Fluorescence in situ hybridization for the identification of environmental microbes.
    Pernthaler A; Pernthaler J
    Methods Mol Biol; 2007; 353():153-64. PubMed ID: 17332640
    [TBL] [Abstract][Full Text] [Related]  

  • 23. probeBase: an online resource for rRNA-targeted oligonucleotide probes.
    Loy A; Horn M; Wagner M
    Nucleic Acids Res; 2003 Jan; 31(1):514-6. PubMed ID: 12520066
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of an alternative Archaea-specific probe for methanogen detection.
    Jupraputtasri W; Boonapatcharoen N; Cheevadhanarak S; Chaiprasert P; Tanticharoen M; Techkarnjanaruk S
    J Microbiol Methods; 2005 Apr; 61(1):95-104. PubMed ID: 15676200
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oligonucleotide probes for RNA-targeted fluorescence in situ hybridization.
    Silverman AP; Kool ET
    Adv Clin Chem; 2007; 43():79-115. PubMed ID: 17249381
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Primary Structure of 28S rRNA Gene Confirms Monophyly of Free-Living Heterotrophic and Phototrophic Apicomplexans (Alveolata).
    Mikhailov KV; Tikhonenkov DV; Janouškovec J; Diakin AY; Ofitserov MV; Mylnikov AP; Aleshin VV
    Biochemistry (Mosc); 2015 Nov; 80(11):1492-9. PubMed ID: 26615441
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photo-cross-linkable oligonucleotide probes for in situ hybridization assays.
    Huan B; Van Atta R; Cheng P; Wood ML; Zychlinsky E; Albagli D
    Biotechniques; 2000 Feb; 28(2):254-5, 258-60. PubMed ID: 10683734
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluorescence in situ hybridization rapidly detects three different pathogenic bacteria in urinary tract infection samples.
    Wu Q; Li Y; Wang M; Pan XP; Tang YF
    J Microbiol Methods; 2010 Nov; 83(2):175-8. PubMed ID: 20807557
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In situ hybridization of phytoplankton using fluorescently labeled rRNA probes.
    Groben R; Medlin L
    Methods Enzymol; 2005; 395():299-310. PubMed ID: 15865974
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolution of the apicoplast and its hosts: from heterotrophy to autotrophy and back again.
    Oborník M; Janouskovec J; Chrudimský T; Lukes J
    Int J Parasitol; 2009 Jan; 39(1):1-12. PubMed ID: 18822291
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A straightforward DOPE (double labeling of oligonucleotide probes)-FISH (fluorescence in situ hybridization) method for simultaneous multicolor detection of six microbial populations.
    Behnam F; Vilcinskas A; Wagner M; Stoecker K
    Appl Environ Microbiol; 2012 Aug; 78(15):5138-42. PubMed ID: 22582069
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simultaneous fluorescence in situ hybridization of mRNA and rRNA for the detection of gene expression in environmental microbes.
    Pernthaler A; Pernthaler J
    Methods Enzymol; 2005; 397():352-71. PubMed ID: 16260302
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Visualization of sporopollenin-containing pathogenic green micro-alga Prototheca wickerhamii by fluorescent in situ hybridization (FISH).
    Ueno R
    Can J Microbiol; 2009 Apr; 55(4):465-72. PubMed ID: 19396247
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of the pathogenic ciliate Pseudocohnilembus persalinus (Oligohymenophorea: Scuticociliatia) by fluorescence in situ hybridization.
    Zhan Z; Stoeck T; Dunthorn M; Xu K
    Eur J Protistol; 2014 Feb; 50(1):16-24. PubMed ID: 24287159
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence of intraflagellar transport and apical complex formation in a free-living relative of the apicomplexa.
    Portman N; Foster C; Walker G; Šlapeta J
    Eukaryot Cell; 2014 Jan; 13(1):10-20. PubMed ID: 24058169
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development and field application of a molecular probe for the primary pathogen of the coral disease white plague type II.
    Richardson LL; Mills DK; Remily ER; Voss JD
    Rev Biol Trop; 2005 May; 53 Suppl 1():1-10. PubMed ID: 17465139
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorescence in situ hybridization for identification of Tritrichomonas foetus in formalin-fixed and paraffin-embedded histological specimens of intestinal trichomoniasis.
    Gookin JL; Stone MR; Yaeger MJ; Meyerholz DK; Moisan P
    Vet Parasitol; 2010 Aug; 172(1-2):139-43. PubMed ID: 20447769
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Morphology and ultrastructure of multiple life cycle stages of the photosynthetic relative of apicomplexa, Chromera velia.
    Oborník M; Vancová M; Lai DH; Janouškovec J; Keeling PJ; Lukeš J
    Protist; 2011 Jan; 162(1):115-30. PubMed ID: 20643580
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detection of nascent RNA transcripts by fluorescence in situ hybridization.
    Brown JM; Buckle VJ
    Methods Mol Biol; 2010; 659():33-50. PubMed ID: 20809302
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Introduction to Fluorescence in situ Hybridization in Microorganisms.
    Almeida C; Azevedo NF
    Methods Mol Biol; 2021; 2246():1-15. PubMed ID: 33576979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.