BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 22212343)

  • 1. Fermentation of crude glycerol from biodiesel production by Clostridium pasteurianum.
    Jensen TO; Kvist T; Mikkelsen MJ; Christensen PV; Westermann P
    J Ind Microbiol Biotechnol; 2012 May; 39(5):709-17. PubMed ID: 22212343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic and proteomic analyses of product selectivity and redox regulation in Clostridium pasteurianum grown on glycerol under varied iron availability.
    Groeger C; Wang W; Sabra W; Utesch T; Zeng AP
    Microb Cell Fact; 2017 Apr; 16(1):64. PubMed ID: 28424096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of biodiesel derived-glycerol for 1,3-PD and citric acid production.
    Mitrea L; Trif M; Cătoi AF; Vodnar DC
    Microb Cell Fact; 2017 Nov; 16(1):190. PubMed ID: 29110678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of fumarate on interspecies electron transfer and the metabolic shift induced in Clostridium pasteurianum by Geobacter sulfurreducens.
    Pérez-Bernal MF; Berthomieu R; Quéméner ED; Bernet N; Trably E
    J Appl Microbiol; 2024 May; 135(5):. PubMed ID: 38749675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fermentation of biodiesel-derived crude glycerol to 1,3-propanediol with bio-wastes as support matrices: Polynomial prediction model.
    Gupta P; Sahoo PC; Sandipam S; Gupta RP; Kumar M
    Enzyme Microb Technol; 2023 Oct; 170():110292. PubMed ID: 37536048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clostridium butyricum population balance model: Predicting dynamic metabolic flux distributions using an objective function related to extracellular glycerol content.
    Serrano-Bermúdez LM; González Barrios AF; Montoya D
    PLoS One; 2018; 13(12):e0209447. PubMed ID: 30571717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an electrotransformation protocol for genetic manipulation of Clostridium pasteurianum.
    Pyne ME; Moo-Young M; Chung DA; Chou CP
    Biotechnol Biofuels; 2013 Apr; 6(1):50. PubMed ID: 23570573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotechnological potential of Clostridium butyricum bacteria.
    Szymanowska-Powałowska D; Orczyk D; Leja K
    Braz J Microbiol; 2014; 45(3):892-901. PubMed ID: 25477923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolically engineer Clostridium saccharoperbutylacetonicum for comprehensive conversion of acid whey into valuable biofuels and biochemicals.
    Ma Y; Guo N; Wang S; Wang Y; Jiang Z; Guo L; Luo W; Wang Y
    Bioresour Technol; 2024 May; 400():130640. PubMed ID: 38554761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A systematic review on utilization of biodiesel-derived crude glycerol in sustainable polymers preparation.
    Wang H; Li H; Lee CK; Mat Nanyan NS; Tay GS
    Int J Biol Macromol; 2024 Mar; 261(Pt 1):129536. PubMed ID: 38278390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolomic and kinetic investigations on the electricity-aided production of butanol by
    Arbter P; Sabra W; Utesch T; Hong Y; Zeng AP
    Eng Life Sci; 2021 Mar; 21(3-4):181-195. PubMed ID: 33716617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioconversion of Raw Glycerol From Waste Cooking-Oil-Based Biodiesel Production to 1,3-Propanediol and Lactate by a Microbial Consortium.
    Wang XL; Zhou JJ; Sun YQ; Xiu ZL
    Front Bioeng Biotechnol; 2019; 7():14. PubMed ID: 30834245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of loading rate and pH on glycerol fermentation and microbial population in an upflow anaerobic filter reactor.
    Cordeiro CN; Rojas P; Veras STS; Kato MT; Florencio L; Sanz JL
    Bioprocess Biosyst Eng; 2024 Jun; ():. PubMed ID: 38822157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparative-Scale Enzymatic Synthesis of rac-Glycerol-1-phosphate from Crude Glycerol Using Acid Phosphatases and Phosphate.
    Tasnádi G; Staśko M; Ditrich K; Hall M; Faber K
    ChemSusChem; 2020 Apr; 13(7):1759-1763. PubMed ID: 31944595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advancements in the Technologies Detecting Food Spoiling Agents.
    Saini RV; Vaid P; Saini NK; Siwal SS; Gupta VK; Thakur VK; Saini AK
    J Funct Biomater; 2021 Nov; 12(4):. PubMed ID: 34940546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved electrocompetence and metabolic engineering of
    Schmitz R; Sabra W; Arbter P; Hong Y; Utesch T; Zeng AP
    Eng Life Sci; 2019 Jun; 19(6):412-422. PubMed ID: 32625019
    [No Abstract]   [Full Text] [Related]  

  • 17. Increased Butanol Yields through Cosubstrate Fermentation of Jerusalem Artichoke Tubers and Crude Glycerol by
    Sarchami T; Rehmann L
    ACS Omega; 2019 Sep; 4(13):15521-15529. PubMed ID: 31572853
    [No Abstract]   [Full Text] [Related]  

  • 18. Bioconversion technologies of crude glycerol to value added industrial products.
    Garlapati VK; Shankar U; Budhiraja A
    Biotechnol Rep (Amst); 2016 Mar; 9():9-14. PubMed ID: 28352587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards improved butanol production through targeted genetic modification of Clostridium pasteurianum.
    Schwarz KM; Grosse-Honebrink A; Derecka K; Rotta C; Zhang Y; Minton NP
    Metab Eng; 2017 Mar; 40():124-137. PubMed ID: 28119139
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.