These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 22212535)

  • 1. Mapping out the multistage fibrillation of glucagon.
    Ghodke S; Nielsen SB; Christiansen G; Hjuler HA; Flink J; Otzen D
    FEBS J; 2012 Mar; 279(5):752-65. PubMed ID: 22212535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucagon fibril polymorphism reflects differences in protofilament backbone structure.
    Andersen CB; Hicks MR; Vetri V; Vandahl B; Rahbek-Nielsen H; Thøgersen H; Thøgersen IB; Enghild JJ; Serpell LC; Rischel C; Otzen DE
    J Mol Biol; 2010 Apr; 397(4):932-46. PubMed ID: 20156459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucagon amyloid-like fibril morphology is selected via morphology-dependent growth inhibition.
    Andersen CB; Otzen D; Christiansen G; Rischel C
    Biochemistry; 2007 Jun; 46(24):7314-24. PubMed ID: 17523599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The changing face of glucagon fibrillation: structural polymorphism and conformational imprinting.
    Pedersen JS; Dikov D; Flink JL; Hjuler HA; Christiansen G; Otzen DE
    J Mol Biol; 2006 Jan; 355(3):501-23. PubMed ID: 16321400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical stress affects glucagon fibrillation kinetics and fibril structure.
    Macchi F; Hoffmann SV; Carlsen M; Vad B; Imparato A; Rischel C; Otzen DE
    Langmuir; 2011 Oct; 27(20):12539-49. PubMed ID: 21877745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N- and C-terminal hydrophobic patches are involved in fibrillation of glucagon.
    Pedersen JS; Dikov D; Otzen DE
    Biochemistry; 2006 Dec; 45(48):14503-12. PubMed ID: 17128989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange.
    Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM
    Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Existence of different structural intermediates on the fibrillation pathway of human serum albumin.
    Juárez J; Taboada P; Mosquera V
    Biophys J; 2009 Mar; 96(6):2353-70. PubMed ID: 19289061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural transition of glucagon in the concentrated solution observed by electrophoretic and spectroscopic techniques.
    Onoue S; Iwasa S; Kojima T; Katoh F; Debari K; Koh K; Matsuda Y; Yajima T
    J Chromatogr A; 2006 Mar; 1109(2):167-73. PubMed ID: 16364337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of fibril formation of bovine kappa-casein indicate a conformational rearrangement as a critical step in the process.
    Leonil J; Henry G; Jouanneau D; Delage MM; Forge V; Putaux JL
    J Mol Biol; 2008 Sep; 381(5):1267-80. PubMed ID: 18616951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a novel human islet amyloid polypeptide beta-sheet domain and factors influencing fibrillogenesis.
    Jaikaran ET; Higham CE; Serpell LC; Zurdo J; Gross M; Clark A; Fraser PE
    J Mol Biol; 2001 May; 308(3):515-25. PubMed ID: 11327784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic evidence for the existence of an obligate pre-fibrillar oligomer during glucagon fibrillation.
    Christensen PA; Pedersen JS; Christiansen G; Otzen DE
    FEBS Lett; 2008 Apr; 582(9):1341-5. PubMed ID: 18358836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependence on solution conditions of aggregation and amyloid formation by an SH3 domain.
    Zurdo J; Guijarro JI; Jiménez JL; Saibil HR; Dobson CM
    J Mol Biol; 2001 Aug; 311(2):325-40. PubMed ID: 11478864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth kinetics of amyloid-like fibrils derived from individual subunits of soy β-conglycinin.
    Wang JM; Yang XQ; Yin SW; Yuan DB; Xia N; Qi JR
    J Agric Food Chem; 2011 Oct; 59(20):11270-7. PubMed ID: 21919519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amyloid structure--one but not the same: the many levels of fibrillar polymorphism.
    Pedersen JS; Andersen CB; Otzen DE
    FEBS J; 2010 Nov; 277(22):4591-601. PubMed ID: 20977663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of insulin amyloid fibrils followed by FTIR simultaneously with CD and electron microscopy.
    Bouchard M; Zurdo J; Nettleton EJ; Dobson CM; Robinson CV
    Protein Sci; 2000 Oct; 9(10):1960-7. PubMed ID: 11106169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of a chemically and conformationally self-replicating system of amyloid-like fibrils.
    Takahashi Y; Mihara H
    Bioorg Med Chem; 2004 Feb; 12(4):693-9. PubMed ID: 14759730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution conformation and amyloid-like fibril formation of a polar peptide derived from a beta-hairpin in the OspA single-layer beta-sheet.
    Ohnishi S; Koide A; Koide S
    J Mol Biol; 2000 Aug; 301(2):477-89. PubMed ID: 10926522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational prerequisites for formation of amyloid fibrils from histones.
    Munishkina LA; Fink AL; Uversky VN
    J Mol Biol; 2004 Sep; 342(4):1305-24. PubMed ID: 15351653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural transformations of oligomeric intermediates in the fibrillation of the immunoglobulin light chain LEN.
    Souillac PO; Uversky VN; Fink AL
    Biochemistry; 2003 Jul; 42(26):8094-104. PubMed ID: 12834361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.