These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 22212808)

  • 61. Diffraction from carbon nanofiber arrays.
    Rehammar R; Francescato Y; Fernández-Domínguez AI; Maier SA; Kinaret JM; Campbell EE
    Opt Lett; 2012 Jan; 37(1):100-2. PubMed ID: 22212804
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Practical aspects of complex permittivity reconstruction with neural-network-controlled FDTD modeling of a two-port fixture.
    Eves EE; Murphy EK; Yakovlev VV
    J Microw Power Electromagn Energy; 2007; 41(4):81-94. PubMed ID: 18557399
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Nanoscopic Spotlight in a Spindle Semiconductor Nanowire.
    Sun Y; Xie X; Chen Y; Sun B; Wang C
    ACS Nano; 2019 Jan; 13(1):772-779. PubMed ID: 30615412
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Accurate modeling of dielectric interfaces by the effective permittivities for the fourth-order symplectic finite-difference time-domain method.
    Hirono T; Yoshikuni Y
    Appl Opt; 2007 Mar; 46(9):1514-24. PubMed ID: 17334444
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Time-domain discrete-dipole approximation for simulation of temporal response of plasmonic nanoparticles.
    Kim KH; Yurkin MA
    Opt Express; 2015 Jun; 23(12):15555-64. PubMed ID: 26193535
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Continuous-discontinuous Galerkin time domain (CDGTD) method with generalized dispersive material (GDM) model for computational photonics.
    Ren Q; Bao H; Campbell SD; Prokopeva LJ; Kildishev AV; Werner DH
    Opt Express; 2018 Oct; 26(22):29005-29016. PubMed ID: 30470069
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Hybrid transfer-matrix FDTD method for layered periodic structures.
    Deinega A; Belousov S; Valuev I
    Opt Lett; 2009 Mar; 34(6):860-2. PubMed ID: 19282957
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Modal formulation for diffraction by absorbing photonic crystal slabs.
    Dossou KB; Botten LC; Asatryan AA; Sturmberg BC; Byrne MA; Poulton CG; McPhedran RC; de Sterke CM
    J Opt Soc Am A Opt Image Sci Vis; 2012 May; 29(5):817-31. PubMed ID: 22561941
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Analysis of dispersive and dissipative media with optical resonances.
    Nunes FD; Borges BH; Weiner J
    Opt Express; 2012 Jul; 20(14):15679-91. PubMed ID: 22772260
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Optoelectronic property modeling of carbon nanotubes grafted with gold nanoparticles.
    Heltzel AJ; Qu L; Dai L
    Nanotechnology; 2008 Jun; 19(24):245702. PubMed ID: 21825827
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Photonic time crystals.
    Zeng L; Xu J; Wang C; Zhang J; Zhao Y; Zeng J; Song R
    Sci Rep; 2017 Dec; 7(1):17165. PubMed ID: 29215044
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Finite-difference time-domain simulation of spacetime cloak.
    Cornelius J; Liu J; Brio M
    Opt Express; 2014 May; 22(10):12087-95. PubMed ID: 24921328
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Electromagnetic simulation of quantum well structures.
    Shi S; Jin G; Prather DW
    Opt Express; 2006 Mar; 14(6):2459-72. PubMed ID: 19503585
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Design and modeling of tapered waveguide for photonic crystal slab coupling by using time-domain Hertzian potentials formulation.
    Massaro A; Grande M; Cingolani R; Passaseo A; De Vittorio M
    Opt Express; 2007 Dec; 15(25):16484-99. PubMed ID: 19550939
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Accurate modeling of the optical properties of left-handed media using a finite-difference time-domain method.
    Zhao Y; Belov P; Hao Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):037602. PubMed ID: 17500838
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Modeling hemoglobin at optical frequency using the unconditionally stable fundamental ADI-FDTD method.
    Heh DY; Tan EL
    Biomed Opt Express; 2011 Apr; 2(5):1169-83. PubMed ID: 21559129
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Models of near-field spectroscopic studies: comparison between Finite-Element and Finite-Difference methods.
    Grosges T; Vial A; Barchiesi D
    Opt Express; 2005 Oct; 13(21):8483-97. PubMed ID: 19498878
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Topology optimization of dispersive plasmonic nanostructures in the time-domain.
    Hassan E; Calà Lesina A
    Opt Express; 2022 May; 30(11):19557-19572. PubMed ID: 36221729
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Contour-path effective permittivities for the two-dimensional finite-difference time-domain method.
    Mohammadi A; Nadgaran H; Agio M
    Opt Express; 2005 Dec; 13(25):10367-81. PubMed ID: 19503252
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Polarization-current-based, finite-difference time-domain, near-to-far-field transformation.
    Zeng Y; Moloney JV
    Opt Lett; 2009 May; 34(10):1600-2. PubMed ID: 19448834
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.