These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 22212980)

  • 1. Overtraining and the use of feature and geometric cues for reorientation.
    Sturz BR; Gaskin KA; Bodily KD
    Psychol Res; 2013 Mar; 77(2):176-82. PubMed ID: 22212980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reorienting when cues conflict: A role for information content in spatial learning?
    Sturz BR; Diemer SM
    Behav Processes; 2010 Jan; 83(1):90-8. PubMed ID: 19903512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environment size and the use of feature and geometric cues for reorientation.
    Sturz BR; Kelly DM
    Acta Psychol (Amst); 2013 Feb; 142(2):251-8. PubMed ID: 23370045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enclosure size and the use of local and global geometric cues for reorientation.
    Sturz BR; Forloines MR; Bodily KD
    Psychon Bull Rev; 2012 Apr; 19(2):270-6. PubMed ID: 22218783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental scaling influences the use of local but not global geometric cues during spatial reorientation.
    Sturz BR; Bell ZK; Bodily KD
    J Exp Psychol Learn Mem Cogn; 2018 Jul; 44(7):1159-1166. PubMed ID: 29239623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of room size on geometry and features cue preference during reorientation: Modulating encoding strength or cue weighting.
    Wang L; Mou W
    Q J Exp Psychol (Hove); 2020 Feb; 73(2):225-238. PubMed ID: 31390927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does constraining field of view prevent extraction of geometric cues for humans during virtual-environment reorientation?
    Sturz BR; Kilday ZA; Bodily KD
    J Exp Psychol Anim Behav Process; 2013 Oct; 39(4):390-6. PubMed ID: 23815384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beacons and surface features differentially influence human reliance on global and local geometric cues when reorienting in a virtual environment.
    Bodily KD; Kilday ZA; Eastman CK; Gaskin KA; Graves AA; Roberts JE; Sturz BR
    Behav Processes; 2013 Feb; 93():71-81. PubMed ID: 23089385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reorientation in diamond-shaped environments: encoding of features and angles in enclosures versus arrays by adult humans and pigeons (Columbia livia).
    Lubyk DM; Spetch ML; Zhou R; Pisklak J; Mou W
    Anim Cogn; 2013 Jul; 16(4):565-81. PubMed ID: 23299225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reorientation in a two-dimensional environment: I. Do adults encode the featural and geometric properties of a two-dimensional schematic of a room?
    Kelly DM; Spetch ML
    J Comp Psychol; 2004 Mar; 118(1):82-94. PubMed ID: 15008676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wild, free-living rufous hummingbirds do not use geometric cues in a spatial task.
    Hornsby MA; Hurly TA; Hamilton CE; Pritchard DJ; Healy SD
    Behav Processes; 2014 Oct; 108():138-41. PubMed ID: 25452077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Look up: Human adults use vertical height cues in reorientation.
    Du Y; Spetch ML; Mou W
    Mem Cognit; 2016 Nov; 44(8):1277-1287. PubMed ID: 27315804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Angular amplitude matters: exploring the functional relationship of geometric cue use by Clark's nutcrackers (Nucifraga columbiana).
    Kelly DM; Reichert JF
    Behav Processes; 2013 Feb; 93():62-70. PubMed ID: 23073501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning of geometry and features in bumblebees (Bombus terrestris).
    Sovrano VA; Potrich D; Vallortigara G
    J Comp Psychol; 2013 Aug; 127(3):312-8. PubMed ID: 23815593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orientation in trapezoid-shaped enclosures: implications for theoretical accounts of geometry learning.
    Sturz BR; Gurley T; Bodily KD
    J Exp Psychol Anim Behav Process; 2011 Apr; 37(2):246-53. PubMed ID: 21319918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geometric orientation by humans: angles weigh in.
    Lubyk DM; Dupuis B; GutiƩrrez L; Spetch ML
    Psychon Bull Rev; 2012 Jun; 19(3):436-42. PubMed ID: 22382695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Testing principal- versus medial-axis accounts of global spatial reorientation.
    Bodily KD; Sullens DG; Price SJ; Sturz BR
    J Exp Psychol Anim Learn Cogn; 2018 Apr; 44(2):209-215. PubMed ID: 29461069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facilitation of learning spatial relations among locations by visual cues: implications for theoretical accounts of spatial learning.
    Sturz BR; Brown MF; Kelly DM
    Psychon Bull Rev; 2009 Apr; 16(2):306-12. PubMed ID: 19293099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sex differences and the effect of instruction on reorientation abilities by humans.
    Siemens MN; Kelly DM
    Mem Cognit; 2018 May; 46(4):566-576. PubMed ID: 29282642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neither by global nor local cues alone: evidence for a unified orientation process.
    Bodily KD; Eastman CK; Sturz BR
    Anim Cogn; 2011 Sep; 14(5):665-74. PubMed ID: 21509592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.