These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 22213033)

  • 1. Drastic change of molecular orientation in a thiazolothiazole copolymer by molecular-weight control and blending with PC61BM leads to high efficiencies in solar cells.
    Osaka I; Saito M; Mori H; Koganezawa T; Takimiya K
    Adv Mater; 2012 Jan; 24(3):425-30. PubMed ID: 22213033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiophene-thiazolothiazole copolymers: significant impact of side chain composition on backbone orientation and solar cell performances.
    Osaka I; Saito M; Koganezawa T; Takimiya K
    Adv Mater; 2014 Jan; 26(2):331-8. PubMed ID: 24403117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular packing and solar cell performance in blends of polymers with a bisadduct fullerene.
    Cates N; Sweetnam S; Hoke ET; Gysel R; Miller CE; Bartelt JA; Xie X; Toney MF; McGehee MD
    Nano Lett; 2012 Mar; 12(3):1566-70. PubMed ID: 22375600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beyond fullerenes: design of nonfullerene acceptors for efficient organic photovoltaics.
    Li H; Earmme T; Ren G; Saeki A; Yoshikawa S; Murari NM; Subramaniyan S; Crane MJ; Seki S; Jenekhe SA
    J Am Chem Soc; 2014 Oct; 136(41):14589-97. PubMed ID: 25265412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced performance of organic photovoltaic cells fabricated with a methyl thiophene-3-carboxylate-containing alternating conjugated copolymer.
    Cho MJ; Seo J; Kim KH; Choi DH; Prasad PN
    Macromol Rapid Commun; 2012 Jan; 33(2):146-51. PubMed ID: 22121017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-polymer solar cells with 3.3% efficiency based on naphthalene diimide-selenophene copolymer acceptor.
    Earmme T; Hwang YJ; Murari NM; Subramaniyan S; Jenekhe SA
    J Am Chem Soc; 2013 Oct; 135(40):14960-3. PubMed ID: 24083488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indaceno-Based Conjugated Polymers for Polymer Solar Cells.
    Yin Y; Zhang Y; Zhao L
    Macromol Rapid Commun; 2018 Jul; 39(14):e1700697. PubMed ID: 29314375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase separation in bulk heterojunctions of semiconducting polymers and fullerenes for photovoltaics.
    Treat ND; Chabinyc ML
    Annu Rev Phys Chem; 2014; 65():59-81. PubMed ID: 24689796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can Ferroelectricity Improve Organic Solar Cells?
    Abdu-Aguye M; Doumon NY; Terzic I; Dong J; Portale G; Loos K; Koster LJA; Loi MA
    Macromol Rapid Commun; 2020 Jun; 41(11):e2000124. PubMed ID: 32372547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Materials for the active layer of organic photovoltaics: ternary solar cell approach.
    Chen YC; Hsu CY; Lin RY; Ho KC; Lin JT
    ChemSusChem; 2013 Jan; 6(1):20-35. PubMed ID: 23288712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incomplete exciton harvesting from fullerenes in bulk heterojunction solar cells.
    Burkhard GF; Hoke ET; Scully SR; McGehee MD
    Nano Lett; 2009 Dec; 9(12):4037-41. PubMed ID: 19810728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coating on a cold substrate largely enhances power conversion efficiency of the bulk heterojunction solar cell.
    Oh JY; Lee TI; Myoung JM; Jeong U; Baik HK
    Macromol Rapid Commun; 2011 Jul; 32(14):1066-71. PubMed ID: 21542045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-efficiency polymer solar cells enhanced by solvent treatment.
    Zhou H; Zhang Y; Seifter J; Collins SD; Luo C; Bazan GC; Nguyen TQ; Heeger AJ
    Adv Mater; 2013 Mar; 25(11):1646-52. PubMed ID: 23355303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A soluble high molecular weight copolymer of benzo[1,2-b:4,5-b']dithiophene and benzoxadiazole for efficient organic photovoltaics.
    Nie W; Macneill CM; Li Y; Noftle RE; Carroll DL; Coffin RC
    Macromol Rapid Commun; 2011 Aug; 32(15):1163-8. PubMed ID: 21661070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells.
    Price SC; Stuart AC; Yang L; Zhou H; You W
    J Am Chem Soc; 2011 Mar; 133(12):4625-31. PubMed ID: 21375339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modifications in morphology resulting from nanoimprinting bulk heterojunction blends for light trapping organic solar cell designs.
    Tumbleston JR; Gadisa A; Liu Y; Collins BA; Samulski ET; Lopez R; Ade H
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8225-30. PubMed ID: 23910827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Blend Composition on Binary Organic Solar Cells Using a Low Band Gap Polymer.
    Wright M; Lin R; Tayebjee MJ; Yang X; Veettil BP; Wen X; Uddin A
    J Nanosci Nanotechnol; 2015 Mar; 15(3):2204-11. PubMed ID: 26413641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [70]fullerene-based materials for organic solar cells.
    Troshin PA; Hoppe H; Peregudov AS; Egginger M; Shokhovets S; Gobsch G; Sariciftci NS; Razumov VF
    ChemSusChem; 2011 Jan; 4(1):119-24. PubMed ID: 21226221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent-free phenyl-C61-butyric acid methyl ester (PCBM) from clathrates: insights for organic photovoltaics from crystal structures and molecular dynamics.
    Casalegno M; Zanardi S; Frigerio F; Po R; Carbonera C; Marra G; Nicolini T; Raos G; Meille SV
    Chem Commun (Camb); 2013 May; 49(40):4525-7. PubMed ID: 23575977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of branching in a semiconducting polymer on the efficiency of organic photovoltaic cells.
    Heintges GH; van Franeker JJ; Wienk MM; Janssen RA
    Chem Commun (Camb); 2016 Jan; 52(1):92-5. PubMed ID: 26497230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.