BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 22213386)

  • 1. Fiber laser based two-photon FRET measurement of calmodulin and mCherry-E(0)GFP proteins.
    Adany P; Johnson CK; Hui R
    Microsc Res Tech; 2012 Jun; 75(6):837-43. PubMed ID: 22213386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching.
    Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB
    J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A dark green fluorescent protein as an acceptor for measurement of Förster resonance energy transfer.
    Murakoshi H; Shibata ACE; Nakahata Y; Nabekura J
    Sci Rep; 2015 Oct; 5():15334. PubMed ID: 26469148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing the performance of mScarlet-I, mRuby3, and mCherry as FRET acceptors for mNeonGreen.
    McCullock TW; MacLean DM; Kammermeier PJ
    PLoS One; 2020; 15(2):e0219886. PubMed ID: 32023253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET).
    He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE
    Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative Förster resonance energy transfer efficiency measurements using simultaneous spectral unmixing of excitation and emission spectra.
    Mustafa S; Hannagan J; Rigby P; Pfleger K; Corry B
    J Biomed Opt; 2013 Feb; 18(2):26024. PubMed ID: 23423332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of an orange acceptor fluorescent protein for sensitized spectral fluorescence resonance energy transfer microscopy using a white-light laser.
    Sun Y; Booker CF; Kumari S; Day RN; Davidson M; Periasamy A
    J Biomed Opt; 2009; 14(5):054009. PubMed ID: 19895111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative FRET analysis with the EGFP-mCherry fluorescent protein pair.
    Albertazzi L; Arosio D; Marchetti L; Ricci F; Beltram F
    Photochem Photobiol; 2009; 85(1):287-97. PubMed ID: 18764891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy.
    Gordon GW; Berry G; Liang XH; Levine B; Herman B
    Biophys J; 1998 May; 74(5):2702-13. PubMed ID: 9591694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair.
    Zimmermann T; Rietdorf J; Girod A; Georget V; Pepperkok R
    FEBS Lett; 2002 Nov; 531(2):245-9. PubMed ID: 12417320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An orange fluorescent protein with a large Stokes shift for single-excitation multicolor FCCS and FRET imaging.
    Shcherbakova DM; Hink MA; Joosen L; Gadella TW; Verkhusha VV
    J Am Chem Soc; 2012 May; 134(18):7913-23. PubMed ID: 22486524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells.
    Tramier M; Zahid M; Mevel JC; Masse MJ; Coppey-Moisan M
    Microsc Res Tech; 2006 Nov; 69(11):933-9. PubMed ID: 16941642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DsRed as a potential FRET partner with CFP and GFP.
    Erickson MG; Moon DL; Yue DT
    Biophys J; 2003 Jul; 85(1):599-611. PubMed ID: 12829514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative FRET measurement using emission-spectral unmixing with independent excitation crosstalk correction.
    Zhang J; Li H; Chai L; Zhang L; Qu J; Chen T
    J Microsc; 2015 Feb; 257(2):104-16. PubMed ID: 25354559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FLIM-FRET Protein-Protein Interaction Assay.
    Bonilla PA; Shrestha R
    Methods Mol Biol; 2024; 2797():261-269. PubMed ID: 38570466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vivo Interaction Studies by Measuring Förster Resonance Energy Transfer Through Fluorescence Lifetime Imaging Microscopy (FRET/FLIM).
    Fäßler F; Pimpl P
    Methods Mol Biol; 2017; 1662():159-170. PubMed ID: 28861826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitive detection of p65 homodimers using red-shifted and fluorescent protein-based FRET couples.
    Goedhart J; Vermeer JE; Adjobo-Hermans MJ; van Weeren L; Gadella TW
    PLoS One; 2007 Oct; 2(10):e1011. PubMed ID: 17925859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulse-shaping based two-photon FRET stoichiometry.
    Flynn DC; Bhagwat AR; Brenner MH; Núñez MF; Mork BE; Cai D; Swanson JA; Ogilvie JP
    Opt Express; 2015 Feb; 23(3):3353-72. PubMed ID: 25836193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein localization in living cells and tissues using FRET and FLIM.
    Chen Y; Mills JD; Periasamy A
    Differentiation; 2003 Dec; 71(9-10):528-41. PubMed ID: 14686950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.