BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 22213565)

  • 1. Bisphosphonate-decorated lipid nanoparticles designed as drug carriers for bone diseases.
    Wang G; Mostafa NZ; Incani V; Kucharski C; Uludağ H
    J Biomed Mater Res A; 2012 Mar; 100(3):684-93. PubMed ID: 22213565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bisphosphonate-derivatized liposomes to control drug release from collagen/hydroxyapatite scaffolds.
    Wang G; Babadağli ME; Uludağ H
    Mol Pharm; 2011 Aug; 8(4):1025-34. PubMed ID: 21557579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bisphosphonate-coated BSA nanoparticles lack bone targeting after systemic administration.
    Wang G; Kucharski C; Lin X; Uludağ H
    J Drug Target; 2010 Sep; 18(8):611-26. PubMed ID: 20158316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cleavage of disulfide-linked fetuin-bisphosphonate conjugates with three physiological thiols.
    Zhang S; Wright JE; Bansal G; Cho P; Uludag H
    Biomacromolecules; 2005; 6(5):2800-8. PubMed ID: 16153121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-delivery of PDTC and doxorubicin by multifunctional micellar nanoparticles to achieve active targeted drug delivery and overcome multidrug resistance.
    Fan L; Li F; Zhang H; Wang Y; Cheng C; Li X; Gu CH; Yang Q; Wu H; Zhang S
    Biomaterials; 2010 Jul; 31(21):5634-42. PubMed ID: 20430433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone targeting potential of bisphosphonate-targeted liposomes. Preparation, characterization and hydroxyapatite binding in vitro.
    Hengst V; Oussoren C; Kissel T; Storm G
    Int J Pharm; 2007 Mar; 331(2):224-7. PubMed ID: 17150316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interaction of cationic polymers and their bisphosphonate derivatives with hydroxyapatite.
    Zhang S; Wright JE; Ozber N; Uludağ H
    Macromol Biosci; 2007 May; 7(5):656-70. PubMed ID: 17457941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Core-crosslinked polymeric micelles with controlled release of covalently entrapped doxorubicin.
    Talelli M; Iman M; Varkouhi AK; Rijcken CJ; Schiffelers RM; Etrych T; Ulbrich K; van Nostrum CF; Lammers T; Storm G; Hennink WE
    Biomaterials; 2010 Oct; 31(30):7797-804. PubMed ID: 20673684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved bone delivery of osteoprotegerin by bisphosphonate conjugation in a rat model of osteoarthritis.
    Doschak MR; Kucharski CM; Wright JE; Zernicke RF; Uludağ H
    Mol Pharm; 2009; 6(2):634-40. PubMed ID: 19718808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and antitumor activity of doxorubicin conjugated stearic acid-g-chitosan oligosaccharide polymeric micelles.
    Hu FQ; Liu LN; Du YZ; Yuan H
    Biomaterials; 2009 Dec; 30(36):6955-63. PubMed ID: 19782395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and characterization of hyaluronic acid-anchored PLGA nanoparticulate carriers of doxorubicin.
    Yadav AK; Mishra P; Mishra AK; Mishra P; Jain S; Agrawal GP
    Nanomedicine; 2007 Dec; 3(4):246-57. PubMed ID: 18068091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) -- structural investigations on two different carrier systems.
    Saupe A; Wissing SA; Lenk A; Schmidt C; Müller RH
    Biomed Mater Eng; 2005; 15(5):393-402. PubMed ID: 16179760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles.
    Wang H; Zhao Y; Wu Y; Hu YL; Nan K; Nie G; Chen H
    Biomaterials; 2011 Nov; 32(32):8281-90. PubMed ID: 21807411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of remote film loading methodology to entrap sirolimus into liposomes: preparation, characterization and in vivo efficacy for treatment of restenosis.
    Haeri A; Sadeghian S; Rabbani S; Anvari MS; Boroumand MA; Dadashzadeh S
    Int J Pharm; 2011 Jul; 414(1-2):16-27. PubMed ID: 21554939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active targeting of brain tumors using nanocarriers.
    Béduneau A; Saulnier P; Benoit JP
    Biomaterials; 2007 Nov; 28(33):4947-67. PubMed ID: 17716726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Archaeosomes as carriers for topical delivery of betamethasone dipropionate: in vitro skin permeation study.
    González-Paredes A; Manconi M; Caddeo C; Ramos-Cormenzana A; Monteoliva-Sánchez M; Fadda AM
    J Liposome Res; 2010 Dec; 20(4):269-76. PubMed ID: 19954402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting glioma cells in vitro with ascorbate-conjugated pharmaceutical nanocarriers.
    Salmaso S; Pappalardo JS; Sawant RR; Musacchio T; Rockwell K; Caliceti P; Torchilin VP
    Bioconjug Chem; 2009 Dec; 20(12):2348-55. PubMed ID: 19928843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifunctionality of lipid-core micelles for drug delivery and tumour targeting.
    Sawant RR; Torchilin VP
    Mol Membr Biol; 2010 Oct; 27(7):232-46. PubMed ID: 20929339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted delivery of doxorubicin using stealth liposomes modified with transferrin.
    Li X; Ding L; Xu Y; Wang Y; Ping Q
    Int J Pharm; 2009 May; 373(1-2):116-23. PubMed ID: 19429296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanocarrier possibilities for functional targeting of bioactive peptides and proteins: state-of-the-art.
    Moutinho CG; Matos CM; Teixeira JA; Balcão VM
    J Drug Target; 2012 Feb; 20(2):114-41. PubMed ID: 22023555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.