BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 22213636)

  • 1. The influence of silver nanostructures formed in situ in silica sol-gel derived films on the rate of Förster resonance energy transfer.
    Holmes-Smith AS; McDowell GR; Toury M; McLoskey D; Hungerford G
    Chemphyschem; 2012 Feb; 13(2):535-41. PubMed ID: 22213636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ formation of silver nanostructures produced via laser irradiation within sol-gel derived films and their interaction with a fluorescence tagged protein.
    Hungerford G; Toury M; McLoskey D; Finnigan S; Gellie S; Holmes-Smith AS
    Phys Chem Chem Phys; 2010 Nov; 12(44):14720-6. PubMed ID: 20859589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanocomposite mesoporous ordered films for lab-on-chip intrinsic surface enhanced Raman scattering detection.
    Malfatti L; Falcaro P; Marmiroli B; Amenitsch H; Piccinini M; Falqui A; Innocenzi P
    Nanoscale; 2011 Sep; 3(9):3760-6. PubMed ID: 21826319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silver nanoparticle-enhanced fluorescence resonance energy transfer sensor for human platelet-derived growth factor-BB detection.
    Li H; Wang M; Wang C; Li W; Qiang W; Xu D
    Anal Chem; 2013 May; 85(9):4492-9. PubMed ID: 23531211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Fluorescence Resonance Energy Transfer Detection of Cobalt Ions by Silver Triangular Nanoplates and Rhodamine 6G].
    Zhang XQ; Peng J; Ling J; Liu CJ; Cao QE; Ding ZT
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Apr; 35(4):951-5. PubMed ID: 26197581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-enhanced fluorescence of rhodamine 6G on the assembled silver nanostructures.
    Liu G; Zheng H; Liu M; Zhang Z; Dong J; Yan X; Li X
    J Nanosci Nanotechnol; 2011 Nov; 11(11):9523-7. PubMed ID: 22413241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silver nanoparticle thin films with nanocavities for surface-enhanced Raman scattering.
    Kahraman M; Tokman N; Culha M
    Chemphyschem; 2008 Apr; 9(6):902-10. PubMed ID: 18366038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective turn-on fluorescence assay of 6-thioguanine by using harmine-modified silver nanoparticles.
    Amjadi M; Farzampour L
    Luminescence; 2014 Sep; 29(6):689-94. PubMed ID: 24288350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic studies of 1,4-dimethoxy-2,3-dimethylanthracene-9,10-dione on plasmonic silver nanoparticles.
    Kavitha SR; Umadevi M; Vanelle P; Terme T; Khoumeri O; Sridhar B
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():472-9. PubMed ID: 24973788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-color nanoscale assemblies of structurally stable, few-atom silver clusters, as reported by fluorescence resonance energy transfer.
    Schultz D; Copp SM; Markešević N; Gardner K; Oemrawsingh SS; Bouwmeester D; Gwinn E
    ACS Nano; 2013 Nov; 7(11):9798-807. PubMed ID: 24090435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Förster resonance energy transfer-based biosensing platform with ultrasmall silver nanoclusters as energy acceptors.
    Xiao Y; Shu F; Wong KY; Liu Z
    Anal Chem; 2013 Sep; 85(18):8493-7. PubMed ID: 23981044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-enhanced spectra on D-gluconic acid coated silver nanoparticles.
    Osorio-Román IO; Ortega-Vásquez V; Vargas C V; Aroca RF
    Appl Spectrosc; 2011 Aug; 65(8):838-43. PubMed ID: 21819772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FRET enhancement in multilayer core-shell nanoparticles.
    Lessard-Viger M; Rioux M; Rainville L; Boudreau D
    Nano Lett; 2009 Aug; 9(8):3066-71. PubMed ID: 19603786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast dynamics of excitons in semiconductor quantum dots on a plasmonically active nano-structured silver film.
    Batabyal S; Makhal A; Das K; Raychaudhuri AK; Pal SK
    Nanotechnology; 2011 May; 22(19):195704. PubMed ID: 21430325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of plasmonic nanostructures and nanofilms on fluorescence resonance energy transfer.
    Szmacinski H; Ray K; Lakowicz JR
    J Biophotonics; 2009 Apr; 2(4):243-52. PubMed ID: 19367592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silver decahedral nanoparticles-enhanced fluorescence resonance energy transfer sensor for specific cell imaging.
    Li H; Hu H; Xu D
    Anal Chem; 2015 Apr; 87(7):3826-33. PubMed ID: 25764443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silver nanoparticle plasmonic enhanced förster resonance energy transfer (FRET) imaging of protein-specific sialylation on the cell surface.
    Zhao T; Li T; Liu Y
    Nanoscale; 2017 Jul; 9(28):9841-9847. PubMed ID: 28485436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A nanoparticle-supported fluorescence resonance energy transfer system formed via layer-by-layer approach as a ratiometric sensor for mercury ions in water.
    Ma C; Zeng F; Wu G; Wu S
    Anal Chim Acta; 2012 Jul; 734():69-78. PubMed ID: 22704474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple depositions of Ag nanoparticles on chemically modified agarose films for surface-enhanced Raman spectroscopy.
    Zhai WL; Li DW; Qu LL; Fossey JS; Long YT
    Nanoscale; 2012 Jan; 4(1):137-42. PubMed ID: 22064940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled deposition of silver nanoparticles in mesoporous single- or multilayer thin films: from tuned pore filling to selective spatial location of nanometric objects.
    Fuertes MC; Marchena M; Marchi MC; Wolosiuk A; Soler-Illia GJ
    Small; 2009 Feb; 5(2):272-80. PubMed ID: 19115355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.