These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 22213662)

  • 1. Combustion waves in hydraulically resisted systems.
    Brailovsky I; Kagan L; Sivashinsky G
    Philos Trans A Math Phys Eng Sci; 2012 Feb; 370(1960):625-46. PubMed ID: 22213662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deflagration-to-detonation transition in inertial-confinement-fusion baseline targets.
    Gauthier P; Chaland F; Masse L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):055401. PubMed ID: 15600681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Explosion propagation in inert porous media.
    Ciccarelli G
    Philos Trans A Math Phys Eng Sci; 2012 Feb; 370(1960):647-67. PubMed ID: 22213663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different stages of flame acceleration from slow burning to Chapman-Jouguet deflagration.
    Valiev DM; Bychkov V; Akkerman V; Eriksson LE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036317. PubMed ID: 19905222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autoignitions and detonations in engines and ducts.
    Bradley D
    Philos Trans A Math Phys Eng Sci; 2012 Feb; 370(1960):689-714. PubMed ID: 22213665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microscopic simulations of supersonic and subsonic exothermic chemical wave fronts and transition to detonation.
    Lemarchand A; Nowakowski B; Dumazer G; Antoine C
    J Chem Phys; 2011 Jan; 134(3):034121. PubMed ID: 21261344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen-oxygen flame acceleration and transition to detonation in channels with no-slip walls for a detailed chemical reaction model.
    Ivanov MF; Kiverin AD; Liberman MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056313. PubMed ID: 21728653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasma-assisted ignition and deflagration-to-detonation transition.
    Starikovskiy A; Aleksandrov N; Rakitin A
    Philos Trans A Math Phys Eng Sci; 2012 Feb; 370(1960):740-73. PubMed ID: 22213667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilized detonation for hypersonic propulsion.
    Rosato DA; Thornton M; Sosa J; Bachman C; Goodwin GB; Ahmed KA
    Proc Natl Acad Sci U S A; 2021 May; 118(20):. PubMed ID: 33972449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studying the influence of single droplets on fuel/air ignition in a high-pressure shock tube.
    Niegemann P; Herzler J; Fikri M; Schulz C
    Rev Sci Instrum; 2020 Oct; 91(10):105107. PubMed ID: 33138609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature fields during the development of autoignition in a rapid compression machine.
    Griffiths JF; MacNamara JP; Mohamed C; Whitaker BJ; Pan J; Sheppard CG
    Faraday Discuss; 2001; (119):287-303; discussion 353-70. PubMed ID: 11877997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical simulations of mechanical and ignition-deflagration responses for PBXs under low-to-medium-level velocity impact loading.
    Yang K; Wu Y; Huang F; Li M
    J Hazard Mater; 2017 Sep; 337():148-162. PubMed ID: 28521204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combustion behaviors of a compression-ignition engine fueled with diesel/methanol blends under various fuel delivery advance angles.
    Huang Z; Lu H; Jiang D; Zeng K; Liu B; Zhang J; Wang X
    Bioresour Technol; 2004 Dec; 95(3):331-41. PubMed ID: 15288277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two dimensional numerical prediction of deflagration-to-detonation transition in porous energetic materials.
    Narin B; Ozyörük Y; Ulas A
    J Hazard Mater; 2014 May; 273():44-52. PubMed ID: 24721693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deflagration to detonation transition in JP-10 mist/air mixtures in a large-scale tube.
    Li S; Liu Q; Chen X; Huang J; Li J
    J Hazard Mater; 2017 Oct; 339():100-113. PubMed ID: 28633081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of models for the low temperature combustion of alkanes through interpretation of pressure-temperature ignition diagrams.
    Hughes KJ; Griffiths JF; Fairweather M; Tomlin AS
    Phys Chem Chem Phys; 2006 Jul; 8(27):3197-210. PubMed ID: 16902712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Using instantaneous spectra to determine dominant species in the DDT process of epoxypropane].
    Li P; Hu D; Yuan CY; Dai SH; Xiao HB
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Sep; 26(9):1569-72. PubMed ID: 17112018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ignition and burning rates of segregated waste combustion in packed beds.
    Ryu C; Phan AN; Yang YB; Sharifi VN; Swithenbank J
    Waste Manag; 2007; 27(6):802-10. PubMed ID: 16790338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large Eddy Simulation of Premixed CH
    Dai Q; Zhang S; Zhang S; Sun H; Huang M
    ACS Omega; 2021 Oct; 6(41):27140-27149. PubMed ID: 34693134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast combustion waves and chemi-ionization processes in a flame initiated by a powerful local plasma source in a closed reactor.
    Artem'ev KV; Berezhetskaya NK; Kazantsev SY; Kononov NG; Kossyi IA; Popov NA; Tarasova NM; Filimonova EA; Firsov KN
    Philos Trans A Math Phys Eng Sci; 2015 Aug; 373(2048):. PubMed ID: 26170426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.