These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 22213813)
1. Transcriptome analysis of rice mature root tissue and root tips in early development by massive parallel sequencing. Kyndt T; Denil S; Haegeman A; Trooskens G; De Meyer T; Van Criekinge W; Gheysen G J Exp Bot; 2012 Mar; 63(5):2141-57. PubMed ID: 22213813 [TBL] [Abstract][Full Text] [Related]
2. Genome-wide transcriptome dissection of the rice root system: implications for developmental and physiological functions. Takehisa H; Sato Y; Igarashi M; Abiko T; Antonio BA; Kamatsuki K; Minami H; Namiki N; Inukai Y; Nakazono M; Nagamura Y Plant J; 2012 Jan; 69(1):126-40. PubMed ID: 21895812 [TBL] [Abstract][Full Text] [Related]
3. Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. Jain M; Khurana JP FEBS J; 2009 Jun; 276(11):3148-62. PubMed ID: 19490115 [TBL] [Abstract][Full Text] [Related]
5. A genotypic difference in primary root length is associated with the inhibitory role of transforming growth factor-beta receptor-interacting protein-1 on root meristem size in wheat. He X; Fang J; Li J; Qu B; Ren Y; Ma W; Zhao X; Li B; Wang D; Li Z; Tong Y Plant J; 2014 Mar; 77(6):931-43. PubMed ID: 24467344 [TBL] [Abstract][Full Text] [Related]
6. Structural characterization and expression pattern analysis of the rice PLT gene family. Li P; Xue H Acta Biochim Biophys Sin (Shanghai); 2011 Sep; 43(9):688-97. PubMed ID: 21807632 [TBL] [Abstract][Full Text] [Related]
7. Crown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling. Inukai Y; Sakamoto T; Ueguchi-Tanaka M; Shibata Y; Gomi K; Umemura I; Hasegawa Y; Ashikari M; Kitano H; Matsuoka M Plant Cell; 2005 May; 17(5):1387-96. PubMed ID: 15829602 [TBL] [Abstract][Full Text] [Related]
8. Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Chen Y; Fan X; Song W; Zhang Y; Xu G Plant Biotechnol J; 2012 Feb; 10(2):139-49. PubMed ID: 21777365 [TBL] [Abstract][Full Text] [Related]
9. De novo Transcriptome Assembly of Common Wild Rice (Oryza rufipogon Griff.) and Discovery of Drought-Response Genes in Root Tissue Based on Transcriptomic Data. Tian XJ; Long Y; Wang J; Zhang JW; Wang YY; Li WM; Peng YF; Yuan QH; Pei XW PLoS One; 2015; 10(7):e0131455. PubMed ID: 26134138 [TBL] [Abstract][Full Text] [Related]
10. The rice WUSCHEL-related homeobox genes are involved in reproductive organ development, hormone signaling and abiotic stress response. Cheng S; Huang Y; Zhu N; Zhao Y Gene; 2014 Oct; 549(2):266-74. PubMed ID: 25106855 [TBL] [Abstract][Full Text] [Related]
11. The auxin responsive AP2/ERF transcription factor CROWN ROOTLESS5 is involved in crown root initiation in rice through the induction of OsRR1, a type-A response regulator of cytokinin signaling. Kitomi Y; Ito H; Hobo T; Aya K; Kitano H; Inukai Y Plant J; 2011 Aug; 67(3):472-84. PubMed ID: 21481033 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome Analysis of Rice Root Tips Reveals Auxin, Gibberellin and Ethylene Signaling Underlying Nutritropism. Yamazaki K; Ohmori Y; Takahashi H; Toyoda A; Sato Y; Nakazono M; Fujiwara T Plant Cell Physiol; 2024 May; 65(4):671-679. PubMed ID: 38226464 [TBL] [Abstract][Full Text] [Related]
13. The regulatory network of cluster-root function and development in phosphate-deficient white lupin (Lupinus albus) identified by transcriptome sequencing. Wang Z; Straub D; Yang H; Kania A; Shen J; Ludewig U; Neumann G Physiol Plant; 2014 Jul; 151(3):323-38. PubMed ID: 24635386 [TBL] [Abstract][Full Text] [Related]
14. Spatio-temporal dynamics in global rice gene expression (Oryza sativa L.) in response to high ammonium stress. Sun L; Di D; Li G; Kronzucker HJ; Shi W J Plant Physiol; 2017 May; 212():94-104. PubMed ID: 28282528 [TBL] [Abstract][Full Text] [Related]
15. Saturated humidity accelerates lateral root development in rice (Oryza sativa L.) seedlings by increasing phloem-based auxin transport. Chhun T; Uno Y; Taketa S; Azuma T; Ichii M; Okamoto T; Tsurumi S J Exp Bot; 2007; 58(7):1695-704. PubMed ID: 17383991 [TBL] [Abstract][Full Text] [Related]
16. OsCAND1 is required for crown root emergence in rice. Wang XF; He FF; Ma XX; Mao CZ; Hodgman C; Lu CG; Wu P Mol Plant; 2011 Mar; 4(2):289-99. PubMed ID: 20978084 [TBL] [Abstract][Full Text] [Related]
17. Combined transcriptomic and physiological approaches reveal strong differences between short- and long-term response of rice (Oryza sativa) to iron toxicity. Quinet M; Vromman D; Clippe A; Bertin P; Lequeux H; Dufey I; Lutts S; Lefèvre I Plant Cell Environ; 2012 Oct; 35(10):1837-59. PubMed ID: 22506799 [TBL] [Abstract][Full Text] [Related]
18. Transcriptomes of isolated Oryza sativa gametes characterized by deep sequencing: evidence for distinct sex-dependent chromatin and epigenetic states before fertilization. Anderson SN; Johnson CS; Jones DS; Conrad LJ; Gou X; Russell SD; Sundaresan V Plant J; 2013 Dec; 76(5):729-41. PubMed ID: 24215296 [TBL] [Abstract][Full Text] [Related]
19. De novo assembly of wheat root transcriptomes and transcriptional signature of longitudinal differentiation. Challa GS; Li W PLoS One; 2018; 13(11):e0205582. PubMed ID: 30395610 [TBL] [Abstract][Full Text] [Related]
20. Overexpression of an F-box protein gene reduces abiotic stress tolerance and promotes root growth in rice. Yan YS; Chen XY; Yang K; Sun ZX; Fu YP; Zhang YM; Fang RX Mol Plant; 2011 Jan; 4(1):190-7. PubMed ID: 21059694 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]