These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 22214083)

  • 1. Removal of 17beta-estradiol (E2) and its chlorination by-products from water and wastewater using non-imprinted polymer (NIP) particles.
    Murray A; Ormeci B; Lai EP
    Water Sci Technol; 2011; 64(6):1291-7. PubMed ID: 22214083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraction of 17beta-estradiol in water using non-imprinted polymer submicron particles in membrane filters.
    Li Y; Lai EP
    J Environ Sci (China); 2010; 22(11):1820-5. PubMed ID: 21235173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of molecularly imprinted and non-imprinted polymers for removal of emerging contaminants in water and wastewater treatment: a review.
    Murray A; Ormeci B
    Environ Sci Pollut Res Int; 2012 Nov; 19(9):3820-30. PubMed ID: 22899441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective removal of 17beta-estradiol at trace concentration using a molecularly imprinted polymer.
    Le Noir M; Lepeuple AS; Guieysse B; Mattiasson B
    Water Res; 2007 Jun; 41(12):2825-31. PubMed ID: 17467031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of endocrine disrupting compounds from wastewater using polymer particles.
    Murray A; Örmeci B; Lai EP
    Water Sci Technol; 2016; 73(1):176-81. PubMed ID: 26744949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of endocrine-disrupting compounds from water using macroporous molecularly imprinted cryogels in a moving-bed reactor.
    Le Noir M; Plieva FM; Mattiasson B
    J Sep Sci; 2009 May; 32(9):1471-9. PubMed ID: 19399860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics and mechanism of 17β-estradiol chlorination in a pilot-scale water distribution systems.
    Li C; Dong F; Crittenden JC; Luo F; Chen X; Zhao T
    Chemosphere; 2017 Jul; 178():73-79. PubMed ID: 28319744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competitive effects of humic acid and wastewater on adsorption of Methylene Blue dye by activated carbon and non-imprinted polymers.
    Murray A; Örmeci B
    J Environ Sci (China); 2018 Apr; 66():310-317. PubMed ID: 29628100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of Stabilized Fe⁻Mn Binary Oxide Nanoparticles: Effective Adsorption of 17β-Estradiol and Influencing Factors.
    Ning Q; Yin Z; Liu Y; Tan X; Zeng G; Jiang L; Liu S; Tian S; Liu N; Wang X
    Int J Environ Res Public Health; 2018 Oct; 15(10):. PubMed ID: 30314268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of estrone, 17alpha-ethinylestradiol, and 17beta-estradiol in algae and duckweed-based wastewater treatment systems.
    Shi W; Wang L; Rousseau DP; Lens PN
    Environ Sci Pollut Res Int; 2010 May; 17(4):824-33. PubMed ID: 20213308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal mechanisms of 17β-estradiol and 17α-ethinylestradiol in membrane bioreactors.
    Yang W; Zhou H; Cicek N
    Water Sci Technol; 2012; 66(6):1263-9. PubMed ID: 22828304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Naproxen removal from water by chlorination and biofilm processes.
    Boyd GR; Zhang S; Grimm DA
    Water Res; 2005 Feb; 39(4):668-76. PubMed ID: 15707640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of endocrine disruptors and non-steroidal anti-inflammatory drugs through wastewater chlorination: the effect of pH, total suspended solids and humic acids and identification of degradation by-products.
    Noutsopoulos C; Koumaki E; Mamais D; Nika MC; Bletsou AA; Thomaidis NS
    Chemosphere; 2015 Jan; 119 Suppl():S109-14. PubMed ID: 24927696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of peracetic acid for estrogen removal from urban wastewaters: E2 as a case study.
    Maurício R; Jorge J; Dias R; Noronha JP; Amaral L; Daam MA; Mano AP; Diniz MS
    Environ Monit Assess; 2020 Jan; 192(2):114. PubMed ID: 31940101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantitative method evaluating the selective adsorption of molecularly imprinted polymer.
    Zhang ZB; Hu JY
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(6):837-42. PubMed ID: 22423989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of by-products of chlorination and photoelectrocatalytic chlorination of an azo dye.
    de Oliveira RL; Anderson MA; Umbuzeiro Gde A; Zocolo GJ; Zanoni MV
    J Hazard Mater; 2012 Feb; 205-206():1-9. PubMed ID: 22230753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly effective removal of 2,4-dinitrophenolic from surface water and wastewater samples using hydrophilic molecularly imprinted polymers.
    Jing T; Wang J; Liu M; Zhou Y; Zhou Y; Mei S
    Environ Sci Pollut Res Int; 2014 Jan; 21(2):1153-62. PubMed ID: 23881595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation and reactivation of antibiotic-resistant bacteria by chlorination in secondary effluents of a municipal wastewater treatment plant.
    Huang JJ; Hu HY; Tang F; Li Y; Lu SQ; Lu Y
    Water Res; 2011 Apr; 45(9):2775-81. PubMed ID: 21440281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Duo-molecularly imprinted polymer-coated magnetic particles for class-selective removal of endocrine-disrupting compounds from aqueous environment.
    Xia X; Lai EP; Örmeci B
    Environ Sci Pollut Res Int; 2013 May; 20(5):3331-9. PubMed ID: 23097074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abatement of humic acid from aqueous solution using a carbonaceous conjugated microporous polymer derived from waste polystyrene.
    Chaukura N; Moyo W; Mamba BB; Nkambule TI
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3291-3300. PubMed ID: 29147989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.