These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 22214340)

  • 41. Temperature-dependent thermal conductivities of 1D semiconducting nanowires via four-point-probe 3-ω method.
    Lee SY; Lee MR; Park NW; Kim GS; Choi HJ; Choi TY; Lee SK
    Nanotechnology; 2013 Dec; 24(49):495202. PubMed ID: 24231523
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Room-Temperature Welding of Silver Telluride Nanowires for High-Performance Thermoelectric Film.
    Zeng X; Ren L; Xie J; Mao D; Wang M; Zeng X; Du G; Sun R; Xu JB; Wong CP
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37892-37900. PubMed ID: 31560511
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tuning quantum corrections and magnetoresistance in ZnO nanowires by ion implantation.
    Zeng YJ; Pereira LM; Menghini M; Temst K; Vantomme A; Locquet JP; Van Haesendonck C
    Nano Lett; 2012 Feb; 12(2):666-72. PubMed ID: 22214218
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synthesis of monoclinic potassium niobate nanowires that are stable at room temperature.
    Kim S; Lee JH; Lee J; Kim SW; Kim MH; Park S; Chung H; Kim YI; Kim W
    J Am Chem Soc; 2013 Jan; 135(1):6-9. PubMed ID: 23234402
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Surface Landau levels and spin states in bismuth (111) ultrathin films.
    Du H; Sun X; Liu X; Wu X; Wang J; Tian M; Zhao A; Luo Y; Yang J; Wang B; Hou JG
    Nat Commun; 2016 Mar; 7():10814. PubMed ID: 26964494
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantum thermopower of metallic atomic-size contacts at room temperature.
    Evangeli C; Matt M; Rincón-García L; Pauly F; Nielaba P; Rubio-Bollinger G; Cuevas JC; Agraït N
    Nano Lett; 2015 Feb; 15(2):1006-11. PubMed ID: 25607343
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Promoted growth of Bi single-crystalline nanowires by sidewall-induced compressive stress in on-film formation of nanowires.
    Kim H; Noh JS; Ham J; Lee W
    J Nanosci Nanotechnol; 2011 Mar; 11(3):2047-51. PubMed ID: 21449347
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Conversion of a Bi nanowire array to an array of Bi-Bi2O3 core-shell nanowires and Bi2O3 nanotubes.
    Li L; Yang YW; Li GH; Zhang LD
    Small; 2006 Apr; 2(4):548-53. PubMed ID: 17193084
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Room temperature biological quantum random walk in phycocyanin nanowires.
    Eisenberg I; Yochelis S; Ben-Harosh R; David L; Faust A; Even-Dar N; Taha H; Haegel NM; Adir N; Keren N; Paltiel Y
    Phys Chem Chem Phys; 2014 Jun; 16(23):11245-50. PubMed ID: 24562323
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Large thermoelectric figure-of-merits from SiGe nanowires by simultaneously measuring electrical and thermal transport properties.
    Lee EK; Yin L; Lee Y; Lee JW; Lee SJ; Lee J; Cha SN; Whang D; Hwang GS; Hippalgaonkar K; Majumdar A; Yu C; Choi BL; Kim JM; Kim K
    Nano Lett; 2012 Jun; 12(6):2918-23. PubMed ID: 22548377
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spin-dependent thermoelectric properties of a Kondo-correlated quantum dot with Rashba spin-orbit coupling.
    Karwacki L; Trocha P; Barnaś J
    J Phys Condens Matter; 2013 Dec; 25(50):505305. PubMed ID: 24275387
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Large enhancements of thermopower and carrier mobility in quantum dot engineered bulk semiconductors.
    Liu Y; Sahoo P; Makongo JP; Zhou X; Kim SJ; Chi H; Uher C; Pan X; Poudeu PF
    J Am Chem Soc; 2013 May; 135(20):7486-95. PubMed ID: 23607819
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thermoelectric Conversion at 30 K in InAs/InP Nanowire Quantum Dots.
    Prete D; Erdman PA; Demontis V; Zannier V; Ercolani D; Sorba L; Beltram F; Rossella F; Taddei F; Roddaro S
    Nano Lett; 2019 May; 19(5):3033-3039. PubMed ID: 30935206
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Controlled electrodeposition of bismuth nanocatalysts for the solution-liquid-solid synthesis of CdSe nanowires on transparent conductive substrates.
    Reim N; Littig A; Behn D; Mews A
    J Am Chem Soc; 2013 Dec; 135(49):18520-7. PubMed ID: 24245969
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Semimetal to semiconductor transition and polymer electrolyte gate modulation in single-crystalline bismuth nanowires.
    Kim J; Lee W
    Nanoscale; 2017 Jan; 9(2):923-929. PubMed ID: 28000830
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gold as an intruder in ZnO nanowires.
    Méndez-Reyes JM; Monroy BM; Bizarro M; Güell F; Martínez A; Ramos E
    Phys Chem Chem Phys; 2015 Sep; 17(33):21525-32. PubMed ID: 26219752
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quantum Sensing of Thermoelectric Power in Low-Dimensional Materials.
    Zhao M; Kim D; Lee YH; Yang H; Cho S
    Adv Mater; 2023 Jul; 35(27):e2106871. PubMed ID: 34889480
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Surface disordered Ge-Si core-shell nanowires as efficient thermoelectric materials.
    Markussen T
    Nano Lett; 2012 Sep; 12(9):4698-704. PubMed ID: 22888828
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electronic and thermal transport study of sinusoidally corrugated nanowires aiming to improve thermoelectric efficiency.
    Park KH; Martin PN; Ravaioli U
    Nanotechnology; 2016 Jan; 27(3):035401. PubMed ID: 26650977
    [TBL] [Abstract][Full Text] [Related]  

  • 60. n-Type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates.
    Son JS; Choi MK; Han MK; Park K; Kim JY; Lim SJ; Oh M; Kuk Y; Park C; Kim SJ; Hyeon T
    Nano Lett; 2012 Feb; 12(2):640-7. PubMed ID: 22268842
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.