These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 2221439)

  • 1. Resistance to d-tubocurarine in lower motor neuron injury is related to increased acetylcholine receptors at the neuromuscular junction.
    Hogue CW; Itani MS; Martyn JA
    Anesthesiology; 1990 Oct; 73(4):703-9. PubMed ID: 2221439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Burn injury to trunk of rat causes denervation-like responses in the gastrocnemius muscle.
    Kim C; Martyn J; Fuke N
    J Appl Physiol (1985); 1988 Oct; 65(4):1745-51. PubMed ID: 3182535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prolonged d-tubocurarine infusion and/or immobilization cause upregulation of acetylcholine receptors and hyperkalemia to succinylcholine in rats.
    Yanez P; Martyn JA
    Anesthesiology; 1996 Feb; 84(2):384-91. PubMed ID: 8602670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tolerance and upregulation of acetylcholine receptors follow chronic infusion of d-tubocurarine.
    Hogue CW; Ward JM; Itani MS; Martyn JA
    J Appl Physiol (1985); 1992 Apr; 72(4):1326-31. PubMed ID: 1592722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal injury induces greater resistance to d-tubocurarine in local rather than in distant muscles in the rat.
    Ibebunjo C; Martyn JA
    Anesth Analg; 2000 Nov; 91(5):1243-9. PubMed ID: 11049916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. d-Tubocurarine accentuates the burn-induced upregulation of nicotinic acetylcholine receptors at the muscle membrane.
    Kim C; Hirose M; Martyn JA
    Anesthesiology; 1995 Aug; 83(2):309-15. PubMed ID: 7631953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resistance to D-tubocurarine of the rat diaphragm as compared to a limb muscle: influence of quantal transmitter release and nicotinic acetylcholine receptors.
    Nguyen-Huu T; Molgó J; Servent D; Duvaldestin P
    Anesthesiology; 2009 May; 110(5):1011-5. PubMed ID: 19352164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of d-tubocurarine pretreatment on succinylcholine twitch augmentation and neuromuscular blockade.
    Szalados JE; Donati F; Bevan DR
    Anesth Analg; 1990 Jul; 71(1):55-9. PubMed ID: 2363529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic intraperitoneal endotoxin treatment in rats induces resistance to d-tubocurarine, but does not produce up-regulation of acetylcholine receptors.
    Hinohara H; Morita T; Okano N; Kunimoto F; Goto F
    Acta Anaesthesiol Scand; 2003 Mar; 47(3):335-41. PubMed ID: 12648201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased extrajunctional acetylcholine sensitivity produced by chronic acetylcholine sensitivity produced by chronic post-synaptic neuromuscular blockade.
    Berg DK; Hall ZW
    J Physiol; 1975 Jan; 244(3):659-76. PubMed ID: 166159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decreased sensitivity to metocurine during long-term phenytoin therapy may be attributable to protein binding and acetylcholine receptor changes.
    Kim CS; Arnold FJ; Itani MS; Martyn JA
    Anesthesiology; 1992 Sep; 77(3):500-6. PubMed ID: 1519788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Burn injury-induced nicotinic acetylcholine receptor changes on muscle membrane.
    Ward JM; Martyn JA
    Muscle Nerve; 1993 Apr; 16(4):348-54. PubMed ID: 8455647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Appearance of new acetylcholine receptors on the baby chick biventer cervicis and denervated rat diaphragm muscles after blockade with alpha-bungarotoxin.
    Chiung Chang C; Jai Su M; Hsien Tung L
    J Physiol; 1977 Jun; 268(2):449-65. PubMed ID: 874917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intraperitoneal endotoxin but not protein malnutrition shifts d-tubocurarine dose-response curves in mouse gastrocnemius muscle.
    Tomera JF; Martyn J
    J Pharmacol Exp Ther; 1989 Jul; 250(1):216-20. PubMed ID: 2545858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding of D-tubocurarine and alpha-bungarotoxin in normal and denervated mouse muscles.
    Chiu TH; Lapa AJ; Barnard EA; Albuquerque EX
    Exp Neurol; 1974 May; 43(2):399-413. PubMed ID: 4363769
    [No Abstract]   [Full Text] [Related]  

  • 16. Mechanisms for the paradoxical resistance to d-tubocurarine during immobilization-induced muscle atrophy.
    Ibebunjo C; Nosek MT; Itani MS; Martyn JA
    J Pharmacol Exp Ther; 1997 Nov; 283(2):443-51. PubMed ID: 9353356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extrajunctional acetylcholine receptors. Alterations in human and experimental neuromuscular diseases.
    Ringel SP; Bender AN; Engel WK
    Arch Neurol; 1976 Nov; 33(11):751-8. PubMed ID: 185992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic stabilization of acetylcholine receptors in vertebrate neuromuscular junction by muscle activity.
    Rotzler S; Brenner HR
    J Cell Biol; 1990 Aug; 111(2):655-61. PubMed ID: 2380246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of furosemide on the neuromuscular junction.
    Scappaticci KA; Ham JA; Sohn YJ; Miller RD; Dretchen KL
    Anesthesiology; 1982 Nov; 57(5):381-8. PubMed ID: 6291433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuromuscular effects of respiratory and metabolic acid-base changes in vitro with and without nondepolarizing muscle relaxants.
    Ono K; Nagano O; Ohta Y; Kosaka F
    Anesthesiology; 1990 Oct; 73(4):710-6. PubMed ID: 1977334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.