These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 22214519)

  • 1. Efficient in vitro encapsulation of protein cargo by an engineered protein container.
    Wörsdörfer B; Pianowski Z; Hilvert D
    J Am Chem Soc; 2012 Jan; 134(2):909-11. PubMed ID: 22214519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple tagging system for protein encapsulation.
    Seebeck FP; Woycechowsky KJ; Zhuang W; Rabe JP; Hilvert D
    J Am Chem Soc; 2006 Apr; 128(14):4516-7. PubMed ID: 16594656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Assembly of Proteinaceous Multishell Structures Mediated by a Supercharged Protein.
    Sasaki E; Hilvert D
    J Phys Chem B; 2016 Jul; 120(26):6089-95. PubMed ID: 27064167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directed evolution of a protein container.
    Wörsdörfer B; Woycechowsky KJ; Hilvert D
    Science; 2011 Feb; 331(6017):589-92. PubMed ID: 21292977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme Encapsulation in an Engineered Lumazine Synthase Protein Cage.
    Azuma Y; Hilvert D
    Methods Mol Biol; 2018; 1798():39-55. PubMed ID: 29868950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo encapsulation of nucleic acids using an engineered nonviral protein capsid.
    Lilavivat S; Sardar D; Jana S; Thomas GC; Woycechowsky KJ
    J Am Chem Soc; 2012 Aug; 134(32):13152-5. PubMed ID: 22827162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Structure and Self-assembly of Negatively Supercharged Protein Cages].
    Sasaki E; Hilvert D
    Yakugaku Zasshi; 2019; 139(2):199-208. PubMed ID: 30713229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Packaging of Active Enzymes into a Protein Cage.
    Azuma Y; Zschoche R; Tinzl M; Hilvert D
    Angew Chem Int Ed Engl; 2016 Jan; 55(4):1531-4. PubMed ID: 26695342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Encapsulation and Controlled Release of Protein Guests by the Bacillus subtilis Lumazine Synthase Capsid.
    Han X; Woycechowsky KJ
    Biochemistry; 2017 Nov; 56(47):6211-6220. PubMed ID: 29087189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme-mediated polymerization inside engineered protein cages.
    Frey R; Hayashi T; Hilvert D
    Chem Commun (Camb); 2016 Aug; 52(68):10423-6. PubMed ID: 27484787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A protein-protein host-guest complex: Thermostable ferritin encapsulating positively supercharged green fluorescent protein.
    Pulsipher KW; Bulos JA; Villegas JA; Saven JG; Dmochowski IJ
    Protein Sci; 2018 Oct; 27(10):1755-1766. PubMed ID: 30051936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the lumazine synthase/riboflavin synthase complex of Bacillus subtilis: crystal structure analysis of reconstituted, icosahedral beta-subunit capsids with bound substrate analogue inhibitor at 2.4 A resolution.
    Ritsert K; Huber R; Turk D; Ladenstein R; Schmidt-Bäse K; Bacher A
    J Mol Biol; 1995 Oct; 253(1):151-67. PubMed ID: 7473709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion-Limited Cargo Loading of an Engineered Protein Container.
    Zschoche R; Hilvert D
    J Am Chem Soc; 2015 Dec; 137(51):16121-32. PubMed ID: 26637019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein Nanocontainers from Nonviral Origin: Testing the Mechanics of Artificial and Natural Protein Cages by AFM.
    Heinze K; Sasaki E; King NP; Baker D; Hilvert D; Wuite GJ; Roos WH
    J Phys Chem B; 2016 Jul; 120(26):5945-52. PubMed ID: 27187612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Protein-Based Encapsulation System with Calcium-Controlled Cargo Loading and Detachment.
    Lizatović R; Assent M; Barendregt A; Dahlin J; Bille A; Satzinger K; Tupina D; Heck AJR; Wennmalm S; André I
    Angew Chem Int Ed Engl; 2018 Aug; 57(35):11334-11338. PubMed ID: 29975817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Assembly of Proteinaceous Shells around Positively Charged Gold Nanomaterials Enhances Colloidal Stability in High-Ionic-Strength Buffers.
    Sasaki E; Dragoman RM; Mantri S; Dirin DN; Kovalenko MV; Hilvert D
    Chembiochem; 2020 Jan; 21(1-2):74-79. PubMed ID: 31523885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic engineering of cellulose-based materials.
    Teeri TT; Brumer H; Daniel G; Gatenholm P
    Trends Biotechnol; 2007 Jul; 25(7):299-306. PubMed ID: 17512068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational prediction of absorbance maxima for a structurally diverse series of engineered green fluorescent protein chromophores.
    Timerghazin QK; Carlson HJ; Liang C; Campbell RE; Brown A
    J Phys Chem B; 2008 Feb; 112(8):2533-41. PubMed ID: 18247600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled encapsulation of multiple proteins in virus capsids.
    Minten IJ; Hendriks LJ; Nolte RJ; Cornelissen JJ
    J Am Chem Soc; 2009 Dec; 131(49):17771-3. PubMed ID: 19995072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple assembly states of lumazine synthase: a model relating catalytic function and molecular assembly.
    Zhang X; Konarev PV; Petoukhov MV; Svergun DI; Xing L; Cheng RH; Haase I; Fischer M; Bacher A; Ladenstein R; Meining W
    J Mol Biol; 2006 Sep; 362(4):753-70. PubMed ID: 16935304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.