These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 22214539)

  • 1. Karyotyping of human chondrocytes in scaffold-assisted cartilage tissue engineering.
    Trimborn M; Endres M; Bommer C; Janke U; Krüger JP; Morawietz L; Kreuz PC; Kaps C
    Acta Biomater; 2012 Apr; 8(4):1519-29. PubMed ID: 22214539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaffold-assisted cartilage tissue engineering using infant chondrocytes from human hip cartilage.
    Kreuz PC; Gentili C; Samans B; Martinelli D; Krüger JP; Mittelmeier W; Endres M; Cancedda R; Kaps C
    Osteoarthritis Cartilage; 2013 Dec; 21(12):1997-2005. PubMed ID: 24096178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human polymer-based cartilage grafts for the regeneration of articular cartilage defects.
    Endres M; Neumann K; Schröder SE; Vetterlein S; Morawietz L; Ringe J; Sittinger M; Kaps C
    Tissue Cell; 2007 Oct; 39(5):293-301. PubMed ID: 17688898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collagen scaffold for cartilage tissue engineering: the benefit of fibrin glue and the proper culture time in an infant cartilage model.
    Deponti D; Di Giancamillo A; Gervaso F; Domenicucci M; Domeneghini C; Sannino A; Peretti GM
    Tissue Eng Part A; 2014 Mar; 20(5-6):1113-26. PubMed ID: 24152291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ovine in vitro model for chondrocyte-based scaffold-assisted cartilage grafts.
    Endres M; Neumann K; Zhou B; Freymann U; Pretzel D; Stoffel M; Kinne RW; Kaps C
    J Orthop Surg Res; 2012 Nov; 7():37. PubMed ID: 23137017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation.
    Jonnalagadda JB; Rivero IV; Dertien JS
    J Biomater Sci Polym Ed; 2015; 26(7):401-19. PubMed ID: 25671317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are surface antigens suited to verify the redifferentiation potential and culture purity of human chondrocytes in cell-based implants.
    Krüger M; Krüger JP; Kinne RW; Kaps C; Endres M
    Tissue Cell; 2015 Oct; 47(5):489-97. PubMed ID: 26254705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expanded human meniscus-derived cells in 3-D polymer-hyaluronan scaffolds for meniscus repair.
    Freymann U; Endres M; Neumann K; Scholman HJ; Morawietz L; Kaps C
    Acta Biomater; 2012 Feb; 8(2):677-85. PubMed ID: 22023746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in autologous chondrocyte implantation and related techniques for cartilage repair.
    Foldager CB
    Dan Med J; 2013 Apr; 60(4):B4600. PubMed ID: 23651721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cartilage-characteristic matrix reconstruction by sequential addition of soluble factors during expansion of human articular chondrocytes and their cultivation in collagen sponges.
    Claus S; Mayer N; Aubert-Foucher E; Chajra H; Perrier-Groult E; Lafont J; Piperno M; Damour O; Mallein-Gerin F
    Tissue Eng Part C Methods; 2012 Feb; 18(2):104-12. PubMed ID: 21933021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fibrin sealants from fresh or fresh/frozen plasma as scaffolds for in vitro articular cartilage regeneration.
    Dare EV; Griffith M; Poitras P; Wang T; Dervin GF; Giulivi A; Hincke MT
    Tissue Eng Part A; 2009 Aug; 15(8):2285-97. PubMed ID: 19226200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative phenotypic analysis of articular chondrocytes cultured within type I or type II collagen scaffolds.
    Freyria AM; Ronzière MC; Cortial D; Galois L; Hartmann D; Herbage D; Mallein-Gerin F
    Tissue Eng Part A; 2009 Jun; 15(6):1233-45. PubMed ID: 18950259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human nasoseptal chondrocytes maintain their differentiated phenotype on PLLA scaffolds produced by thermally induced phase separation and supplemented with bioactive glass 1393.
    Conoscenti G; Carfì Pavia F; Ongaro A; Brucato V; Goegele C; Schwarz S; Boccaccini AR; Stoelzel K; La Carrubba V; Schulze-Tanzil G
    Connect Tissue Res; 2019 Jul; 60(4):344-357. PubMed ID: 30348015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expansion of human articular chondrocytes and formation of tissue-engineered cartilage: a step towards exploring a potential use of matrix-induced cell therapy.
    Munirah S; Samsudin OC; Aminuddin BS; Ruszymah BH
    Tissue Cell; 2010 Oct; 42(5):282-92. PubMed ID: 20810142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Molecular characterization of tissue-engineered articular chondrocyte transplants based on resorbable polymer fleece].
    Kaps C; Fuchs S; Endres M; Vetterlein S; Krenn V; Perka C; Sittinger M
    Orthopade; 2004 Jan; 33(1):76-85. PubMed ID: 14747914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PGA-associated heterotopic chondrocyte cocultures: implications of nasoseptal and auricular chondrocytes in articular cartilage repair.
    El Sayed K; Marzahn U; John T; Hoyer M; Zreiqat H; Witthuhn A; Kohl B; Haisch A; Schulze-Tanzil G
    J Tissue Eng Regen Med; 2013 Jan; 7(1):61-72. PubMed ID: 22081560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cartilage tissue engineering on fibrous chitosan scaffolds produced by a replica molding technique.
    Ragetly GR; Slavik GJ; Cunningham BT; Schaeffer DJ; Griffon DJ
    J Biomed Mater Res A; 2010 Apr; 93(1):46-55. PubMed ID: 19484774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human septal chondrocyte redifferentiation in alginate, polyglycolic acid scaffold, and monolayer culture.
    Homicz MR; Chia SH; Schumacher BL; Masuda K; Thonar EJ; Sah RL; Watson D
    Laryngoscope; 2003 Jan; 113(1):25-32. PubMed ID: 12514377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dedifferentiation and redifferentiation of articular chondrocytes from surface and middle zones: changes in microRNAs-221/-222, -140, and -143/145 expression.
    Hong E; Reddi AH
    Tissue Eng Part A; 2013 Apr; 19(7-8):1015-22. PubMed ID: 23190381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heparin-based self-assembling peptide scaffold reestablish chondrogenic phenotype of expanded de-differentiated human chondrocytes.
    Recha-Sancho L; Semino CE
    J Biomed Mater Res A; 2016 Jul; 104(7):1694-706. PubMed ID: 26939919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.