BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22214709)

  • 1. An advanced cone-and-plate reactor for the in vitro-application of shear stress on adherent cells.
    Dreyer L; Krolitzki B; Autschbach R; Vogt P; Welte T; Ngezahayo A; Glasmacher B
    Clin Hemorheol Microcirc; 2011; 49(1-4):391-7. PubMed ID: 22214709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biorheological views of endothelial cell responses to mechanical stimuli.
    Sato M; Ohashi T
    Biorheology; 2005; 42(6):421-41. PubMed ID: 16369082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress.
    Shao J; Wu L; Wu J; Zheng Y; Zhao H; Jin Q; Zhao J
    Lab Chip; 2009 Nov; 9(21):3118-25. PubMed ID: 19823728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphological responses of single endothelial cells exposed to physiological levels of fluid shear stress.
    Masuda M; Fujiwara K
    Front Med Biol Eng; 1993; 5(2):79-87. PubMed ID: 8241033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endothelial cell morphologic response to asymmetric stenosis hemodynamics: effects of spatial wall shear stress gradients.
    Rouleau L; Farcas M; Tardif JC; Mongrain R; Leask RL
    J Biomech Eng; 2010 Aug; 132(8):081013. PubMed ID: 20670062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endothelial cell response to biomechanical forces under simulated vascular loading conditions.
    Punchard MA; Stenson-Cox C; O'cearbhaill ED; Lyons E; Gundy S; Murphy L; Pandit A; McHugh PE; Barron V
    J Biomech; 2007; 40(14):3146-54. PubMed ID: 17561024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualization of flow-dependent concentration polarization of macromolecules at the surface of a cultured endothelial cell monolayer by means of fluorescence microscopy.
    Naiki T; Karino T
    Biorheology; 2000; 37(5-6):371-84. PubMed ID: 11204543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular and cytoskeleton morphology and strength of adhesion of cells on self-assembled monolayers of organosilanes.
    Kapur R; Rudolph AS
    Exp Cell Res; 1998 Oct; 244(1):275-85. PubMed ID: 9770370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of flow in a cone-and-plate apparatus with respect to spatial and temporal effects on endothelial cells.
    Buschmann MH; Dieterich P; Adams NA; Schnittler HJ
    Biotechnol Bioeng; 2005 Mar; 89(5):493-502. PubMed ID: 15648084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of shear stress and stretch on endothelial function.
    Ando J; Yamamoto K
    Antioxid Redox Signal; 2011 Sep; 15(5):1389-403. PubMed ID: 20854012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of shear stress on endothelial cell haptotaxis on micropatterned surfaces.
    Hsu S; Thakar R; Liepmann D; Li S
    Biochem Biophys Res Commun; 2005 Nov; 337(1):401-9. PubMed ID: 16188239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vascular cell adhesion molecule-1 expression in endothelial cells exposed to physiological coronary wall shear stresses.
    O'Keeffe LM; Muir G; Piterina AV; McGloughlin T
    J Biomech Eng; 2009 Aug; 131(8):081003. PubMed ID: 19604015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shear-stress preconditioning and tissue-engineering-based paradigms for generating arterial substitutes.
    Baguneid M; Murray D; Salacinski HJ; Fuller B; Hamilton G; Walker M; Seifalian AM
    Biotechnol Appl Biochem; 2004 Apr; 39(Pt 2):151-7. PubMed ID: 15032735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved in vitro rheological system for studying the effect of fluid shear stress on cultured cells.
    Schnittler HJ; Franke RP; Akbay U; Mrowietz C; Drenckhahn D
    Am J Physiol; 1993 Jul; 265(1 Pt 1):C289-98. PubMed ID: 8338136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of reactive oxygen species in endothelial cells under different pulsatile shear stresses and glucose concentrations.
    Chin LK; Yu JQ; Fu Y; Yu T; Liu AQ; Luo KQ
    Lab Chip; 2011 Jun; 11(11):1856-63. PubMed ID: 21373653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in organization and composition of the extracellular matrix underlying cultured endothelial cells exposed to laminar steady shear stress.
    Thoumine O; Nerem RM; Girard PR
    Lab Invest; 1995 Oct; 73(4):565-76. PubMed ID: 7474929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of two complex hemodynamic stimulation profiles on hemostatic genes in a vessel-like environment.
    Bergh N; Ulfhammer E; Karlsson L; Jern S
    Endothelium; 2008; 15(5-6):231-8. PubMed ID: 19065314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Comparison of adhesion of different endothelial cells under shear stress load in the flow field in vitro].
    Xiao Z; Zhang B; Zhang E; Xu W; Shi Y; Guo Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Feb; 28(1):157-62. PubMed ID: 21485205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endothelial cell culture model for replication of physiological profiles of pressure, flow, stretch, and shear stress in vitro.
    Estrada R; Giridharan GA; Nguyen MD; Roussel TJ; Shakeri M; Parichehreh V; Prabhu SD; Sethu P
    Anal Chem; 2011 Apr; 83(8):3170-7. PubMed ID: 21413699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model for shear stress-induced deformation of a flow sensor on the surface of vascular endothelial cells.
    Barakat AI
    J Theor Biol; 2001 May; 210(2):221-36. PubMed ID: 11371176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.