BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

429 related articles for article (PubMed ID: 22214715)

  • 1. Experimental evaluation of mechanical and electrical properties of RBC suspensions in Dextran and PEG under flow II. Role of RBC deformability and morphology.
    Antonova N; Riha P; Ivanov I; Gluhcheva Y
    Clin Hemorheol Microcirc; 2011; 49(1-4):441-50. PubMed ID: 22214715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental evaluation of mechanical and electrical properties of RBC suspensions under flow. Role of RBC aggregating agent.
    Antonova N; Riha P; Ivanov I
    Clin Hemorheol Microcirc; 2010; 45(2-4):253-61. PubMed ID: 20675907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of normal human erythrocytes on blood rheology in microcirculation.
    Hirata C; Kobayashi H; Mizuno N; Kutsuna H; Ishina K; Ishii M
    Osaka City Med J; 2007 Dec; 53(2):73-85. PubMed ID: 18432063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of N-methyl D-aspartate (NMDA) receptors has no influence on rheological properties of erythrocytes.
    Reinhart WH; Geissmann-Ott C; Bogdanova A
    Clin Hemorheol Microcirc; 2011; 49(1-4):307-13. PubMed ID: 22214702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular determinants of low-shear blood viscosity.
    Baskurt OK; Meiselman HJ
    Biorheology; 1997; 34(3):235-47. PubMed ID: 9474265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic depletion decreases the aggregability of erythrocytes.
    Reinhart WH; Schulzki T
    Clin Hemorheol Microcirc; 2011; 49(1-4):451-61. PubMed ID: 22214716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conductometric study of shear-dependent processes in red cell suspensions. II. Transient cross-stream hematocrit distribution.
    Pribush A; Meyerstein D; Meiselman HJ; Meyerstein N
    Biorheology; 2004; 41(1):29-43. PubMed ID: 14967888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of erythrocyte flexibility on microvascular perfusion and oxygenation during acute anemia.
    Cabrales P
    Am J Physiol Heart Circ Physiol; 2007 Aug; 293(2):H1206-15. PubMed ID: 17449555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyethylene glycol additives reduce hemolysis in red blood cell suspensions exposed to mechanical stress.
    Kameneva MV; Repko BM; Krasik EF; Perricelli BC; Borovetz HS
    ASAIO J; 2003; 49(5):537-42. PubMed ID: 14524560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical and experimental analysis of the sedimentation kinetics of concentrated red cell suspensions in a centrifugal field: determination of the aggregation and deformation of RBC by flux density and viscosity functions.
    Lerche D; Frömer D
    Biorheology; 2001; 38(2-3):249-62. PubMed ID: 11381179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the red blood cell apparent membrane elastic modulus from viscometric measurements.
    Drochon A; Barthes-Biesel D; Lacombe C; Lelievre JC
    J Biomech Eng; 1990 Aug; 112(3):241-9. PubMed ID: 2120513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro effects of polyethylene glycol in University of Wisconsin preservation solution on human red blood cell aggregation and hemorheology.
    Zhao WY; Xiong HY; Yuan Q; Zeng L; Wang LM; Zhu YH
    Clin Hemorheol Microcirc; 2011; 47(3):177-85. PubMed ID: 21498897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of polyethylene glycol and hydroxyethyl starch in University of Wisconsin preservation solution on human red blood cell aggregation and viscosity.
    Mosbah IB; Franco-Gou R; Abdennebi HB; Hernandez R; Escolar G; Saidane D; Rosello-Catafau J; Peralta C
    Transplant Proc; 2006 Jun; 38(5):1229-35. PubMed ID: 16797270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of inositol hexaphosphate-loaded red blood cells (RBCs) on the rheology of sickle RBCs.
    Lamarre Y; Bourgeaux V; Pichon A; Hardeman MR; Campion Y; Hardeman-Zijp M; Martin C; Richalet JP; Bernaudin F; Driss F; Godfrin Y; Connes P
    Transfusion; 2013 Mar; 53(3):627-36. PubMed ID: 22804873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flows of red blood cell suspensions through narrow two-dimensional channels.
    Chan T; Jaffrin MY; Seshadri V; Mc Kay C
    Biorheology; 1982; 19(1/2):253-67. PubMed ID: 6807368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blood rheology and hemodynamics.
    Baskurt OK; Meiselman HJ
    Semin Thromb Hemost; 2003 Oct; 29(5):435-50. PubMed ID: 14631543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of erythrocyte deformability during capillary wetting.
    Zhou R; Gordon J; Palmer AF; Chang HC
    Biotechnol Bioeng; 2006 Feb; 93(2):201-11. PubMed ID: 16302256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical model and experimental study of red blood cell (RBC) deformation in microchannels.
    Korin N; Bransky A; Dinnar U
    J Biomech; 2007; 40(9):2088-95. PubMed ID: 17188279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Washing stored red blood cells in an albumin solution improves their morphologic and hemorheologic properties.
    Reinhart WH; Piety NZ; Deuel JW; Makhro A; Schulzki T; Bogdanov N; Goede JS; Bogdanova A; Abidi R; Shevkoplyas SS
    Transfusion; 2015 Aug; 55(8):1872-81. PubMed ID: 25752902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time dependent variation of human blood conductivity as a method for an estimation of RBC aggregation.
    Antonova N; Riha P; Ivanov I
    Clin Hemorheol Microcirc; 2008; 39(1-4):69-78. PubMed ID: 18503112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.