BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 22214932)

  • 1. Traces of certain drug molecules can enhance heme-enzyme catalytic outcomes.
    Parashar A; Manoj KM
    Biochem Biophys Res Commun; 2012 Jan; 417(3):1041-5. PubMed ID: 22214932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mimicking heme enzymes in the solid state: metal-organic materials with selectively encapsulated heme.
    Larsen RW; Wojtas L; Perman J; Musselman RL; Zaworotko MJ; Vetromile CM
    J Am Chem Soc; 2011 Jul; 133(27):10356-9. PubMed ID: 21668010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peroxide-utilizing biocatalysts: structural and functional diversity of heme-containing enzymes.
    Matsunaga I; Shiro Y
    Curr Opin Chem Biol; 2004 Apr; 8(2):127-32. PubMed ID: 15062772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of the heme active site to increase the peroxidase activity of thermophilic cytochrome P450: a rational approach.
    Behera RK; Goyal S; Mazumdar S
    J Inorg Biochem; 2010 Nov; 104(11):1185-94. PubMed ID: 20709408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical studies of enzyme mechanisms involving high-valent iron intermediates.
    Bassan A; Blomberg MR; Borowski T; Siegbahn PE
    J Inorg Biochem; 2006 Apr; 100(4):727-43. PubMed ID: 16513176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the catalytic mechanism of sulfite reductase by X-ray crystallography: structures of the Escherichia coli hemoprotein in complex with substrates, inhibitors, intermediates, and products.
    Crane BR; Siegel LM; Getzoff ED
    Biochemistry; 1997 Oct; 36(40):12120-37. PubMed ID: 9315849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free radical modification of prosthetic heme groups.
    Ortiz de Montellano PR
    Pharmacol Ther; 1990; 48(1):95-120. PubMed ID: 2274579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alcohols induce beta-hematin formation via the dissociation of aggregated heme and reduction in interfacial tension of the solution.
    Huy NT; Maeda A; Uyen DT; Trang DT; Sasai M; Shiono T; Oida T; Harada S; Kamei K
    Acta Trop; 2007 Feb; 101(2):130-8. PubMed ID: 17274939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atypical profiles and modulations of heme-enzymes catalyzed outcomes by low amounts of diverse additives suggest diffusible radicals' obligatory involvement in such redox reactions.
    Manoj KM; Parashar A; Venkatachalam A; Goyal S; Satyalipsu ; Singh PG; Gade SK; Periyasami K; Jacob RS; Sardar D; Singh S; Kumar R; Gideon DA
    Biochimie; 2016 Jun; 125():91-111. PubMed ID: 26969799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repurposed and artificial heme enzymes for cyclopropanation reactions.
    Roelfes G
    J Inorg Biochem; 2021 Sep; 222():111523. PubMed ID: 34217039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox regulation and reaction mechanism of human cystathionine-beta-synthase: a PLP-dependent hemesensor protein.
    Banerjee R; Zou CG
    Arch Biochem Biophys; 2005 Jan; 433(1):144-56. PubMed ID: 15581573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism for transduction of the ligand-binding signal in heme-based gas sensory proteins revealed by resonance Raman spectroscopy.
    Uchida T; Kitagawa T
    Acc Chem Res; 2005 Aug; 38(8):662-70. PubMed ID: 16104689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small molecule directed aggregation of a heme peptide on gold: an STM study.
    Satterlee JD; Mazur U
    J Phys Chem B; 2006 Nov; 110(46):22968-70. PubMed ID: 17107128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dioxygen activation by copper, heme and non-heme iron enzymes: comparison of electronic structures and reactivities.
    Decker A; Solomon EI
    Curr Opin Chem Biol; 2005 Apr; 9(2):152-63. PubMed ID: 15811799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the redox reactions between heme and tetrahydrobiopterin in the nitric oxide synthases.
    Stuehr DJ; Wei CC; Wang Z; Hille R
    Dalton Trans; 2005 Nov; (21):3427-35. PubMed ID: 16234921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligand probes for heme proteins.
    Anderson JL; Chapman SK
    Dalton Trans; 2005 Jan; (1):13-24. PubMed ID: 15605142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tetranuclear iron(III) complexes of an octadentate pyridine-carboxylate ligand and their catalytic activity in alkane oxidation by hydrogen peroxide.
    Gutkina EA; Trukhan VM; Pierpont CG; Mkoyan S; Strelets VV; Nordlander E; Shteinman AA
    Dalton Trans; 2006 Jan; (3):492-501. PubMed ID: 16395449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effector-mediated alteration of substrate orientation in cytochrome P450 2C9.
    Hummel MA; Gannett PM; Aguilar JS; Tracy TS
    Biochemistry; 2004 Jun; 43(22):7207-14. PubMed ID: 15170358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of the cytochrome c peroxidase of Pseudomonas aeruginosa. The role of a heme-linked protein loop: a mutagenesis study.
    Hsiao HC; Boycheva S; Watmough NJ; Brittain T
    J Inorg Biochem; 2007 Aug; 101(8):1133-9. PubMed ID: 17568678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong ligand-protein interactions revealed by ultrafast infrared spectroscopy of CO in the heme pocket of the oxygen sensor FixL.
    Nuernberger P; Lee KF; Bonvalet A; Bouzhir-Sima L; Lambry JC; Liebl U; Joffre M; Vos MH
    J Am Chem Soc; 2011 Nov; 133(43):17110-3. PubMed ID: 21970443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.