These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 22215072)

  • 41. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese.
    Lovley DR; Phillips EJ
    Appl Environ Microbiol; 1988 Jun; 54(6):1472-80. PubMed ID: 16347658
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Chemotactic responses to metals and anaerobic electron acceptors in Shewanella oneidensis MR-1.
    Bencharit S; Ward MJ
    J Bacteriol; 2005 Jul; 187(14):5049-53. PubMed ID: 15995227
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of cathode potentials and nitrate concentrations on dissimilatory nitrate reductions by Pseudomonas alcaliphila in bioelectrochemical systems.
    Zhang W; Zhang Y; Su W; Jiang Y; Su M; Gao P; Li D
    J Environ Sci (China); 2014 Apr; 26(4):885-91. PubMed ID: 25079419
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reduction of Fe(II)EDTA-NO by a newly isolated Pseudomonas sp. strain DN-2 in NOx scrubber solution.
    Zhang SH; Li W; Wu CZ; Chen H; Shi Y
    Appl Microbiol Biotechnol; 2007 Oct; 76(5):1181-7. PubMed ID: 17598105
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reduction of selenite to elemental red selenium by Pseudomonas sp. Strain CA5.
    Hunter WJ; Manter DK
    Curr Microbiol; 2009 May; 58(5):493-8. PubMed ID: 19189180
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hydrogen and Formate Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese by Alteromonas putrefaciens.
    Lovley DR; Phillips EJ; Lonergan DJ
    Appl Environ Microbiol; 1989 Mar; 55(3):700-6. PubMed ID: 16347876
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of Pseudomonas aeruginosa an innovative bioremediation tool in multi metals ions from simulated system using multi response methodology.
    Singh R; Bishnoi NR; Kirrolia A
    Bioresour Technol; 2013 Jun; 138():222-34. PubMed ID: 23612183
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Metal resistance mechanisms in Gram-negative bacteria and their potential to remove Hg in the presence of other metals.
    Giovanella P; Cabral L; Costa AP; de Oliveira Camargo FA; Gianello C; Bento FM
    Ecotoxicol Environ Saf; 2017 Jun; 140():162-169. PubMed ID: 28259060
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Facultative Anaerobe Caldibacillus debilis GB1: Characterization and Use in a Designed Aerotolerant, Cellulose-Degrading Coculture with Clostridium thermocellum.
    Wushke S; Levin DB; Cicek N; Sparling R
    Appl Environ Microbiol; 2015 Aug; 81(16):5567-73. PubMed ID: 26048931
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Presence of Fe3+ and Zn2+ promoted biotransformation of Cd-citrate complex and removal of metals from solutions.
    Qian JW; Tao Y; Zhang WJ; He XH; Gao P; Li DP
    J Hazard Mater; 2013 Dec; 263 Pt 2():367-73. PubMed ID: 23820427
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microbial Degradation of Citric Acid in Low Level Radioactive Waste Disposal: Impact on Biomineralization Reactions.
    Byrd N; Lloyd JR; Small JS; Taylor F; Bagshaw H; Boothman C; Morris K
    Front Microbiol; 2021; 12():565855. PubMed ID: 33995289
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Shewanella sp. O23S as a Driving Agent of a System Utilizing Dissimilatory Arsenate-Reducing Bacteria Responsible for Self-Cleaning of Water Contaminated with Arsenic.
    Drewniak L; Stasiuk R; Uhrynowski W; Sklodowska A
    Int J Mol Sci; 2015 Jun; 16(7):14409-27. PubMed ID: 26121297
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Isolation and identification of selenite reducing archaea from Tuz (salt) Lake In Turkey.
    Güven K; Mutlu MB; Çırpan C; Kutlu HM
    J Basic Microbiol; 2013 May; 53(5):397-401. PubMed ID: 22753131
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analysis of biosorption and biotransformation mechanism of Pseudomonas chengduensis strain MBR under Cd(II) stress from genomic perspective.
    Wang X; Li D; Gao P; Gu W; He X; Yang W; Tang W
    Ecotoxicol Environ Saf; 2020 Jul; 198():110655. PubMed ID: 32361136
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dissimilatory iodate reduction by marine Pseudomonas sp. strain SCT.
    Amachi S; Kawaguchi N; Muramatsu Y; Tsuchiya S; Watanabe Y; Shinoyama H; Fujii T
    Appl Environ Microbiol; 2007 Sep; 73(18):5725-30. PubMed ID: 17644635
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dissimilatory Fe(III) Reduction by the Marine Microorganism Desulfuromonas acetoxidans.
    Roden EE; Lovley DR
    Appl Environ Microbiol; 1993 Mar; 59(3):734-42. PubMed ID: 16348888
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Hydrogen-Oxidizing, Fe(III)-Reducing Microorganism from the Great Bay Estuary, New Hampshire.
    Caccavo F; Blakemore RP; Lovley DR
    Appl Environ Microbiol; 1992 Oct; 58(10):3211-6. PubMed ID: 16348780
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biodegradation of chloromethane by Pseudomonas aeruginosa strain NB1 under nitrate-reducing and aerobic conditions.
    Freedman DL; Swamy M; Bell NC; Verce MF
    Appl Environ Microbiol; 2004 Aug; 70(8):4629-34. PubMed ID: 15294795
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization and optimization of Fe(II)Cit-No reduction by Pseudomonas sp.
    Liu N; Jiang JL; Cai LL; Li W
    Environ Technol; 2011 Dec; 33(15-16):1947-53. PubMed ID: 22439583
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Chromate reduction by Pseudomonas sp. str. 10 in the presence of some heavy metals and alternative electron acceptors].
    Smirnova GF; Podgorskiĭ VS
    Mikrobiol Z; 2013; 75(4):8-12. PubMed ID: 24006778
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.