BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 22215451)

  • 1. Spectral and temporal measures in hybrid cochlear implant users: on the mechanism of electroacoustic hearing benefits.
    Golub JS; Won JH; Drennan WR; Worman TD; Rubinstein JT
    Otol Neurotol; 2012 Feb; 33(2):147-53. PubMed ID: 22215451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Psychoacoustic abilities associated with music perception in cochlear implant users.
    Won JH; Drennan WR; Kang RS; Rubinstein JT
    Ear Hear; 2010 Dec; 31(6):796-805. PubMed ID: 20595901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Psychoacoustic performance and music and speech perception in prelingually deafened children with cochlear implants.
    Jung KH; Won JH; Drennan WR; Jameyson E; Miyasaki G; Norton SJ; Rubinstein JT
    Audiol Neurootol; 2012; 17(3):189-97. PubMed ID: 22398954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of Spectral and Temporal Resolution in Cochlear Implant Users Using Psychoacoustic Discrimination and Speech Cue Categorization.
    Winn MB; Won JH; Moon IJ
    Ear Hear; 2016; 37(6):e377-e390. PubMed ID: 27438871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Music and psychoacoustic perception abilities in cochlear implant users with auditory neuropathy spectrum disorder.
    Yüksel M; Çiprut A
    Int J Pediatr Otorhinolaryngol; 2020 Apr; 131():109865. PubMed ID: 31945735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinguistic Outcome Measures in Adult Cochlear Implant Users Over the First Year of Implantation.
    Drennan WR; Won JH; Timme AO; Rubinstein JT
    Ear Hear; 2016; 37(3):354-64. PubMed ID: 26656317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of bimodal and bilateral cochlear implant users on speech recognition with competing talker, music perception, affective prosody discrimination, and talker identification.
    Cullington HE; Zeng FG
    Ear Hear; 2011 Feb; 32(1):16-30. PubMed ID: 21178567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maximizing the spectral and temporal benefits of two clinically used sound processing strategies for cochlear implants.
    Won JH; Nie K; Drennan WR; Rubinstein JT
    Trends Amplif; 2012 Dec; 16(4):201-10. PubMed ID: 23264570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preservation of hearing in cochlear implant surgery: advantages of combined electrical and acoustical speech processing.
    Gantz BJ; Turner C; Gfeller KE; Lowder MW
    Laryngoscope; 2005 May; 115(5):796-802. PubMed ID: 15867642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy of cochlear implant recipients on pitch perception, melody recognition, and speech reception in noise.
    Gfeller K; Turner C; Oleson J; Zhang X; Gantz B; Froman R; Olszewski C
    Ear Hear; 2007 Jun; 28(3):412-23. PubMed ID: 17485990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Music and lexical tone perception in Chinese adult cochlear implant users.
    Wang S; Liu B; Dong R; Zhou Y; Li J; Qi B; Chen X; Han D; Zhang L
    Laryngoscope; 2012 Jun; 122(6):1353-60. PubMed ID: 22362607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Low Frequency Residual Hearing on Music Perception and Psychoacoustic Abilities in Pediatric Cochlear Implant Recipients.
    Yüksel M; Meredith MA; Rubinstein JT
    Front Neurosci; 2019; 13():924. PubMed ID: 31551687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined electric and acoustic hearing performance with Zebra® speech processor: speech reception, place, and temporal coding evaluation.
    Vaerenberg B; Péan V; Lesbros G; De Ceulaer G; Schauwers K; Daemers K; Gnansia D; Govaerts PJ
    Cochlear Implants Int; 2013 Jun; 14(3):150-7. PubMed ID: 23321588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavioral characterization of the cochlear amplifier lesion due to loss of function of stereocilin (STRC) in human subjects.
    Benoit C; Carlson RJ; King MC; Horn DL; Rubinstein JT
    Hear Res; 2023 Nov; 439():108898. PubMed ID: 37890241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patient-Reported Outcomes From the United States Clinical Trial for a Hybrid Cochlear Implant.
    Kelsall DC; Arnold RJG; Lionnet L
    Otol Neurotol; 2017 Oct; 38(9):1251-1261. PubMed ID: 28777227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and validation of the University of Washington Clinical Assessment of Music Perception test.
    Kang R; Nimmons GL; Drennan W; Longnion J; Ruffin C; Nie K; Won JH; Worman T; Yueh B; Rubinstein J
    Ear Hear; 2009 Aug; 30(4):411-8. PubMed ID: 19474735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of residual hearing in traditional cochlear implant candidates after implantation with a conventional electrode.
    Cosetti MK; Friedmann DR; Zhu BZ; Heman-Ackah SE; Fang Y; Keller RG; Shapiro WH; Roland JT; Waltzman SB
    Otol Neurotol; 2013 Apr; 34(3):516-21. PubMed ID: 23449440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Music perception with temporal cues in acoustic and electric hearing.
    Kong YY; Cruz R; Jones JA; Zeng FG
    Ear Hear; 2004 Apr; 25(2):173-85. PubMed ID: 15064662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Listening Effort in Prelingual Cochlear Implant Recipients: Effects of Spectral and Temporal Auditory Processing and Contralateral Acoustic Hearing.
    Yüksel M; Taşdemir İ; Çiprut A
    Otol Neurotol; 2022 Dec; 43(10):e1077-e1084. PubMed ID: 36099588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Tinnitus on Auditory Spectral and Temporal Resolution and Speech Perception in Tinnitus Patients.
    Moon IJ; Won JH; Kang HW; Kim DH; An YH; Shim HJ
    J Neurosci; 2015 Oct; 35(42):14260-9. PubMed ID: 26490865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.