These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 22216159)
1. Optical dissection of neural circuits responsible for Drosophila larval locomotion with halorhodopsin. Inada K; Kohsaka H; Takasu E; Matsunaga T; Nose A PLoS One; 2011; 6(12):e29019. PubMed ID: 22216159 [TBL] [Abstract][Full Text] [Related]
2. Gap Junction-Mediated Signaling from Motor Neurons Regulates Motor Generation in the Central Circuits of Larval Matsunaga T; Kohsaka H; Nose A J Neurosci; 2017 Feb; 37(8):2045-2060. PubMed ID: 28115483 [TBL] [Abstract][Full Text] [Related]
3. Identification of Inhibitory Premotor Interneurons Activated at a Late Phase in a Motor Cycle during Drosophila Larval Locomotion. Itakura Y; Kohsaka H; Ohyama T; Zlatic M; Pulver SR; Nose A PLoS One; 2015; 10(9):e0136660. PubMed ID: 26335437 [TBL] [Abstract][Full Text] [Related]
4. The tail segments are required by the performance but not the accomplishment of various modes of Drosophila larval locomotion. He Y; Ding Y; Gong C; Zhou J; Gong Z Behav Brain Res; 2024 Aug; 471():115074. PubMed ID: 38825023 [TBL] [Abstract][Full Text] [Related]
5. Improved expression of halorhodopsin for light-induced silencing of neuronal activity. Zhao S; Cunha C; Zhang F; Liu Q; Gloss B; Deisseroth K; Augustine GJ; Feng G Brain Cell Biol; 2008 Aug; 36(1-4):141-54. PubMed ID: 18931914 [TBL] [Abstract][Full Text] [Related]
6. Role of sensory experience in functional development of Drosophila motor circuits. Fushiki A; Kohsaka H; Nose A PLoS One; 2013; 8(4):e62199. PubMed ID: 23620812 [TBL] [Abstract][Full Text] [Related]
7. Optical control of zebrafish behavior with halorhodopsin. Arrenberg AB; Del Bene F; Baier H Proc Natl Acad Sci U S A; 2009 Oct; 106(42):17968-73. PubMed ID: 19805086 [TBL] [Abstract][Full Text] [Related]
8. Identification of excitatory premotor interneurons which regulate local muscle contraction during Drosophila larval locomotion. Hasegawa E; Truman JW; Nose A Sci Rep; 2016 Jul; 6():30806. PubMed ID: 27470675 [TBL] [Abstract][Full Text] [Related]
9. Optogenetic perturbation of neural activity with laser illumination in semi-intact drosophila larvae in motion. Matsunaga T; Fushiki A; Nose A; Kohsaka H J Vis Exp; 2013 Jul; (77):e50513. PubMed ID: 23851598 [TBL] [Abstract][Full Text] [Related]
10. Data-driven analysis of motor activity implicates 5-HT2A neurons in backward locomotion of larval Drosophila. Park J; Kondo S; Tanimoto H; Kohsaka H; Nose A Sci Rep; 2018 Jul; 8(1):10307. PubMed ID: 29985473 [TBL] [Abstract][Full Text] [Related]
11. Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae. Pulver SR; Pashkovski SL; Hornstein NJ; Garrity PA; Griffith LC J Neurophysiol; 2009 Jun; 101(6):3075-88. PubMed ID: 19339465 [TBL] [Abstract][Full Text] [Related]
12. Targeted expression of tetanus toxin reveals sets of neurons involved in larval locomotion in Drosophila. Suster ML; Martin JR; Sung C; Robinow S J Neurobiol; 2003 May; 55(2):233-46. PubMed ID: 12672020 [TBL] [Abstract][Full Text] [Related]
13. Development of larval motor circuits in Drosophila. Kohsaka H; Okusawa S; Itakura Y; Fushiki A; Nose A Dev Growth Differ; 2012 Apr; 54(3):408-19. PubMed ID: 22524610 [TBL] [Abstract][Full Text] [Related]
14. Dcf1 Improves Behavior Deficit in Drosophila and Mice Caused by Optogenetic Suppression. Liu Q; Gan L; Ni J; Chen Y; Chen Y; Huang Z; Huang X; Wen T J Cell Biochem; 2017 Dec; 118(12):4210-4215. PubMed ID: 28401598 [TBL] [Abstract][Full Text] [Related]
15. Role of serotonergic neurons in the Drosophila larval response to light. Rodriguez Moncalvo VG; Campos AR BMC Neurosci; 2009 Jun; 10():66. PubMed ID: 19549295 [TBL] [Abstract][Full Text] [Related]
16. Peripheral multidendritic sensory neurons are necessary for rhythmic locomotion behavior in Drosophila larvae. Song W; Onishi M; Jan LY; Jan YN Proc Natl Acad Sci U S A; 2007 Mar; 104(12):5199-204. PubMed ID: 17360325 [TBL] [Abstract][Full Text] [Related]
17. A subset of interneurons required for Drosophila larval locomotion. Yoshikawa S; Long H; Thomas JB Mol Cell Neurosci; 2016 Jan; 70():22-9. PubMed ID: 26621406 [TBL] [Abstract][Full Text] [Related]
18. Functional Genetic Screen to Identify Interneurons Governing Behaviorally Distinct Aspects of Drosophila Larval Motor Programs. Clark MQ; McCumsey SJ; Lopez-Darwin S; Heckscher ES; Doe CQ G3 (Bethesda); 2016 Jul; 6(7):2023-31. PubMed ID: 27172197 [TBL] [Abstract][Full Text] [Related]
19. Selection of behaviors and segmental coordination during larval locomotion is disrupted by nuclear polyglutamine inclusions in a new Drosophila Huntington's disease-like model. Nishimura Y; Yalgin C; Akimoto S; Doumanis J; Sasajima R; Nukina N; Miyakawa H; Moore AW; Morimoto T J Neurogenet; 2010 Dec; 24(4):194-206. PubMed ID: 21087194 [TBL] [Abstract][Full Text] [Related]
20. Microbial light-activatable proton pumps as neuronal inhibitors to functionally dissect neuronal networks in C. elegans. Husson SJ; Liewald JF; Schultheis C; Stirman JN; Lu H; Gottschalk A PLoS One; 2012; 7(7):e40937. PubMed ID: 22815873 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]