BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 22216232)

  • 1. A network-based approach on elucidating the multi-faceted nature of chronological aging in S. cerevisiae.
    Borklu Yucel E; Ulgen KO
    PLoS One; 2011; 6(12):e29284. PubMed ID: 22216232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronological aging-induced apoptosis in yeast.
    Fabrizio P; Longo VD
    Biochim Biophys Acta; 2008 Jul; 1783(7):1280-5. PubMed ID: 18445486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiomics Approach to Novel Therapeutic Targets for Cancer and Aging-Related Diseases: Role of Sld7 in Yeast Aging Network.
    Dayan IE; Arga KY; Ulgen KO
    OMICS; 2017 Feb; 21(2):100-113. PubMed ID: 28118095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth signaling promotes chronological aging in budding yeast by inducing superoxide anions that inhibit quiescence.
    Weinberger M; Mesquita A; Caroll T; Marks L; Yang H; Zhang Z; Ludovico P; Burhans WC
    Aging (Albany NY); 2010 Oct; 2(10):709-26. PubMed ID: 21076178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of medium acidity on the chronological life span of Saccharomyces cerevisiae - lipids, signaling cascades, mitochondrial and vacuolar functions.
    Yucel EB; Eraslan S; Ulgen KO
    FEBS J; 2014 Feb; 281(4):1281-303. PubMed ID: 24393494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying yeast chronological life span by outgrowth of aged cells.
    Murakami C; Kaeberlein M
    J Vis Exp; 2009 May; (27):. PubMed ID: 19421136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms that Link Chronological Aging to Cellular Quiescence in Budding Yeast.
    Mohammad K; Baratang Junio JA; Tafakori T; Orfanos E; Titorenko VI
    Int J Mol Sci; 2020 Jul; 21(13):. PubMed ID: 32630624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The sweet taste of death: glucose triggers apoptosis during yeast chronological aging.
    Ruckenstuhl C; Carmona-Gutierrez D; Madeo F
    Aging (Albany NY); 2010 Oct; 2(10):643-9. PubMed ID: 21076182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extension of chronological life span by reduced TOR signaling requires down-regulation of Sch9p and involves increased mitochondrial OXPHOS complex density.
    Pan Y; Shadel GS
    Aging (Albany NY); 2009 Jan; 1(1):131-45. PubMed ID: 20157595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A system based network approach to ethanol tolerance in Saccharomyces cerevisiae.
    Kasavi C; Eraslan S; Arga KY; Oner ET; Kirdar B
    BMC Syst Biol; 2014 Aug; 8():90. PubMed ID: 25103914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A functional unfolded protein response is required for chronological aging in Saccharomyces cerevisiae.
    Chadwick SR; Fazio EN; Etedali-Zadeh P; Genereaux J; Duennwald ML; Lajoie P
    Curr Genet; 2020 Feb; 66(1):263-277. PubMed ID: 31346745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Replicative and chronological aging in Saccharomyces cerevisiae.
    Longo VD; Shadel GS; Kaeberlein M; Kennedy B
    Cell Metab; 2012 Jul; 16(1):18-31. PubMed ID: 22768836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating network changes from lifespan measurements using a parsimonious gene network model of cellular aging.
    Qin H
    BMC Bioinformatics; 2019 Nov; 20(1):599. PubMed ID: 31747877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of crosstalks between the Snf1 kinase complex and sphingolipid metabolism in S. cerevisiae via systems biology approaches.
    Borklu Yucel E; Ulgen KO
    Mol Biosyst; 2013 Nov; 9(11):2914-31. PubMed ID: 24056632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shortest-path network analysis is a useful approach toward identifying genetic determinants of longevity.
    Managbanag JR; Witten TM; Bonchev D; Fox LA; Tsuchiya M; Kennedy BK; Kaeberlein M
    PLoS One; 2008; 3(11):e3802. PubMed ID: 19030232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutaredoxin Deletion Shortens Chronological Life Span in Saccharomyces cerevisiae via ROS-Mediated Ras/PKA Activation.
    Liu Y; Yang F; Li S; Dai J; Deng H
    J Proteome Res; 2018 Jul; 17(7):2318-2327. PubMed ID: 29790350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The chronological life span of Saccharomyces cerevisiae.
    Fabrizio P; Longo VD
    Aging Cell; 2003 Apr; 2(2):73-81. PubMed ID: 12882320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical genetic screen identifies lithocholic acid as an anti-aging compound that extends yeast chronological life span in a TOR-independent manner, by modulating housekeeping longevity assurance processes.
    Goldberg AA; Richard VR; Kyryakov P; Bourque SD; Beach A; Burstein MT; Glebov A; Koupaki O; Boukh-Viner T; Gregg C; Juneau M; English AM; Thomas DY; Titorenko VI
    Aging (Albany NY); 2010 Jul; 2(7):393-414. PubMed ID: 20622262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The chronological life span of Saccharomyces cerevisiae to study mitochondrial dysfunction and disease.
    Parrella E; Longo VD
    Methods; 2008 Dec; 46(4):256-62. PubMed ID: 18930829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extension of chronological life span in yeast by decreased TOR pathway signaling.
    Powers RW; Kaeberlein M; Caldwell SD; Kennedy BK; Fields S
    Genes Dev; 2006 Jan; 20(2):174-84. PubMed ID: 16418483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.