These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 22216249)

  • 1. Differential gene expression from microarray analysis distinguishes woven and lamellar bone formation in the rat ulna following mechanical loading.
    McKenzie JA; Bixby EC; Silva MJ
    PLoS One; 2011; 6(12):e29328. PubMed ID: 22216249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing histological, vascular and molecular responses associated with woven and lamellar bone formation induced by mechanical loading in the rat ulna.
    McKenzie JA; Silva MJ
    Bone; 2011 Feb; 48(2):250-8. PubMed ID: 20849995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antagonizing the αv β3 integrin inhibits angiogenesis and impairs woven but not lamellar bone formation induced by mechanical loading.
    Tomlinson RE; Schmieder AH; Quirk JD; Lanza GM; Silva MJ
    J Bone Miner Res; 2014 Sep; 29(9):1970-80. PubMed ID: 24644077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide-mediated vasodilation increases blood flow during the early stages of stress fracture healing.
    Tomlinson RE; Shoghi KI; Silva MJ
    J Appl Physiol (1985); 2014 Feb; 116(4):416-24. PubMed ID: 24356518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo fatigue loading of the rat ulna induces both bone formation and resorption and leads to time-related changes in bone mechanical properties and density.
    Hsieh YF; Silva MJ
    J Orthop Res; 2002 Jul; 20(4):764-71. PubMed ID: 12168665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress fracture healing: fatigue loading of the rat ulna induces upregulation in expression of osteogenic and angiogenic genes that mimic the intramembranous portion of fracture repair.
    Wohl GR; Towler DA; Silva MJ
    Bone; 2009 Feb; 44(2):320-30. PubMed ID: 18950737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo static creep loading of the rat forelimb reduces ulnar structural properties at time-zero and induces damage-dependent woven bone formation.
    Lynch JA; Silva MJ
    Bone; 2008 May; 42(5):942-9. PubMed ID: 18295561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hedgehog signaling mediates woven bone formation and vascularization during stress fracture healing.
    Kazmers NH; McKenzie JA; Shen TS; Long F; Silva MJ
    Bone; 2015 Dec; 81():524-532. PubMed ID: 26348666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteocyte density in woven bone.
    Hernandez CJ; Majeska RJ; Schaffler MB
    Bone; 2004 Nov; 35(5):1095-9. PubMed ID: 15542034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical loading thresholds for lamellar and woven bone formation.
    Turner CH; Forwood MR; Rho JY; Yoshikawa T
    J Bone Miner Res; 1994 Jan; 9(1):87-97. PubMed ID: 8154314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HIF-1α regulates bone formation after osteogenic mechanical loading.
    Tomlinson RE; Silva MJ
    Bone; 2015 Apr; 73():98-104. PubMed ID: 25541207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of a technique for studying functional adaptation of the mouse ulna in response to mechanical loading.
    Lee KC; Maxwell A; Lanyon LE
    Bone; 2002 Sep; 31(3):407-12. PubMed ID: 12231414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skeletal self-repair: stress fracture healing by rapid formation and densification of woven bone.
    Uthgenannt BA; Kramer MH; Hwu JA; Wopenka B; Silva MJ
    J Bone Miner Res; 2007 Oct; 22(10):1548-56. PubMed ID: 17576168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Damaging fatigue loading stimulates increases in periosteal vascularity at sites of bone formation in the rat ulna.
    Matsuzaki H; Wohl GR; Novack DV; Lynch JA; Silva MJ
    Calcif Tissue Int; 2007 Jun; 80(6):391-9. PubMed ID: 17551770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of bone formation in rat tail vertebrae by mechanical loading.
    Chambers TJ; Evans M; Gardner TN; Turner-Smith A; Chow JW
    Bone Miner; 1993 Feb; 20(2):167-78. PubMed ID: 8453332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and finite element analysis of the rat ulnar loading model-correlations between strain and bone formation following fatigue loading.
    Kotha SP; Hsieh YF; Strigel RM; Müller R; Silva MJ
    J Biomech; 2004 Apr; 37(4):541-8. PubMed ID: 14996566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dmp1 Lineage Cells Contribute Significantly to Periosteal Lamellar Bone Formation Induced by Mechanical Loading But Are Depleted from the Bone Surface During Rapid Bone Formation.
    Harris TL; Silva MJ
    JBMR Plus; 2022 Mar; 6(3):e10593. PubMed ID: 35309865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal mechanically-induced signaling events in bone and dorsal root ganglion neurons after in vivo bone loading.
    Bleedorn JA; Hornberger TA; Goodman CA; Hao Z; Sample SJ; Amene E; Markel MD; Behan M; Muir P
    PLoS One; 2018; 13(2):e0192760. PubMed ID: 29486004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone formation after damaging in vivo fatigue loading results in recovery of whole-bone monotonic strength and increased fatigue life.
    Silva MJ; Touhey DC
    J Orthop Res; 2007 Feb; 25(2):252-61. PubMed ID: 17106875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth rate rather than gender determines the size of the adaptive response of the growing skeleton to mechanical strain.
    Mosley JR; Lanyon LE
    Bone; 2002 Jan; 30(1):314-9. PubMed ID: 11792603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.