These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 22216462)
41. Cellular localization of the Arabidopsis class 2 phytoglobin influences somatic embryogenesis. Godee C; Mira MM; Wally O; Hill RD; Stasolla C J Exp Bot; 2017 Feb; 68(5):1013-1023. PubMed ID: 28199692 [TBL] [Abstract][Full Text] [Related]
42. Auxin signaling through SCF Takato S; Kakei Y; Mitsui M; Ishida Y; Suzuki M; Yamazaki C; Hayashi KI; Ishii T; Nakamura A; Soeno K; Shimada Y Biosci Biotechnol Biochem; 2017 Jul; 81(7):1320-1326. PubMed ID: 28406060 [TBL] [Abstract][Full Text] [Related]
43. ATAF2, a NAC transcription factor, binds to the promoter and regulates NIT2 gene expression involved in auxin biosynthesis. Huh SU; Lee SB; Kim HH; Paek KH Mol Cells; 2012 Sep; 34(3):305-13. PubMed ID: 22965747 [TBL] [Abstract][Full Text] [Related]
44. A Novel Arabidopsis microRNA promotes IAA biosynthesis via the indole-3-acetaldoxime pathway by suppressing superroot1. Kong W; Li Y; Zhang M; Jin F; Li J Plant Cell Physiol; 2015 Apr; 56(4):715-26. PubMed ID: 25552472 [TBL] [Abstract][Full Text] [Related]
45. The sHSP22 Heat Shock Protein Requires the ABI1 Protein Phosphatase to Modulate Polar Auxin Transport and Downstream Responses. Li Y; Li Y; Liu Y; Wu Y; Xie Q Plant Physiol; 2018 Mar; 176(3):2406-2425. PubMed ID: 29288233 [TBL] [Abstract][Full Text] [Related]
46. Low-fluence red light increases the transport and biosynthesis of auxin. Liu X; Cohen JD; Gardner G Plant Physiol; 2011 Oct; 157(2):891-904. PubMed ID: 21807888 [TBL] [Abstract][Full Text] [Related]
47. GH3 Auxin-Amido Synthetases Alter the Ratio of Indole-3-Acetic Acid and Phenylacetic Acid in Arabidopsis. Aoi Y; Tanaka K; Cook SD; Hayashi KI; Kasahara H Plant Cell Physiol; 2020 Mar; 61(3):596-605. PubMed ID: 31808940 [TBL] [Abstract][Full Text] [Related]
49. HOMEOBOX PROTEIN52 Mediates the Crosstalk between Ethylene and Auxin Signaling during Primary Root Elongation by Modulating Auxin Transport-Related Gene Expression. Miao ZQ; Zhao PX; Mao JL; Yu LH; Yuan Y; Tang H; Liu ZB; Xiang CB Plant Cell; 2018 Nov; 30(11):2761-2778. PubMed ID: 30333147 [TBL] [Abstract][Full Text] [Related]
50. The heterozygous abp1/ABP1 insertional mutant has defects in functions requiring polar auxin transport and in regulation of early auxin-regulated genes. Effendi Y; Rietz S; Fischer U; Scherer GF Plant J; 2011 Jan; 65(2):282-94. PubMed ID: 21223392 [TBL] [Abstract][Full Text] [Related]
51. Serratia marcescens PLR enhances lateral root formation through supplying PLR-derived auxin and enhancing auxin biosynthesis in Arabidopsis. Zhang C; Yu Z; Zhang M; Li X; Wang M; Li L; Li X; Ding Z; Tian H J Exp Bot; 2022 Jun; 73(11):3711-3725. PubMed ID: 35196372 [TBL] [Abstract][Full Text] [Related]
52. IAA-Ala Resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress. Kinoshita N; Wang H; Kasahara H; Liu J; Macpherson C; Machida Y; Kamiya Y; Hannah MA; Chua NH Plant Cell; 2012 Sep; 24(9):3590-602. PubMed ID: 22960911 [TBL] [Abstract][Full Text] [Related]
53. Genetic aspects of auxin biosynthesis and its regulation. Brumos J; Alonso JM; Stepanova AN Physiol Plant; 2014 May; 151(1):3-12. PubMed ID: 24007561 [TBL] [Abstract][Full Text] [Related]
54. Genetic Interaction between Arabidopsis SUR2/CYP83B1 and GNOM Indicates the Importance of Stabilizing Local Auxin Accumulation in Lateral Root Initiation. Goto C; Ikegami A; Goh T; Maruyama K; Kasahara H; Takebayashi Y; Kamiya Y; Toyokura K; Kondo Y; Ishizaki K; Mimura T; Fukaki H Plant Cell Physiol; 2023 Oct; 64(10):1178-1188. PubMed ID: 37522618 [TBL] [Abstract][Full Text] [Related]
55. Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. Rashotte AM; Brady SR; Reed RC; Ante SJ; Muday GK Plant Physiol; 2000 Feb; 122(2):481-90. PubMed ID: 10677441 [TBL] [Abstract][Full Text] [Related]
56. Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers. Lewis DR; Negi S; Sukumar P; Muday GK Development; 2011 Aug; 138(16):3485-95. PubMed ID: 21771812 [TBL] [Abstract][Full Text] [Related]
57. Nitric oxide influences auxin signaling through S-nitrosylation of the Arabidopsis TRANSPORT INHIBITOR RESPONSE 1 auxin receptor. Terrile MC; París R; Calderón-Villalobos LI; Iglesias MJ; Lamattina L; Estelle M; Casalongué CA Plant J; 2012 May; 70(3):492-500. PubMed ID: 22171938 [TBL] [Abstract][Full Text] [Related]
58. Negative phototropism is seen in Arabidopsis inflorescences when auxin signaling is reduced to a minimal level by an Aux/IAA dominant mutation, axr2. Sato A; Sasaki S; Matsuzaki J; Yamamoto KT Plant Signal Behav; 2015; 10(3):e990838. PubMed ID: 25738325 [TBL] [Abstract][Full Text] [Related]
59. Phosphatidylinositol-specific phospholipase C2 functions in auxin-modulated root development. Chen X; Li L; Xu B; Zhao S; Lu P; He Y; Ye T; Feng YQ; Wu Y Plant Cell Environ; 2019 May; 42(5):1441-1457. PubMed ID: 30496625 [TBL] [Abstract][Full Text] [Related]
60. Transcriptional feedback regulation of YUCCA genes in response to auxin levels in Arabidopsis. Suzuki M; Yamazaki C; Mitsui M; Kakei Y; Mitani Y; Nakamura A; Ishii T; Soeno K; Shimada Y Plant Cell Rep; 2015 Aug; 34(8):1343-52. PubMed ID: 25903543 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]