These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 22216966)
21. Expanding the substrate selectivity of SNAP/CLIP-tagging of intracellular targets. Macias-Contreras M; Little KN; Zhu L Methods Enzymol; 2020; 638():233-257. PubMed ID: 32416915 [TBL] [Abstract][Full Text] [Related]
22. Selective immobilization of Sonic hedgehog on benzylguanine terminated patterned self-assembled monolayers. Kwok CW; Strähle U; Zhao Y; Scharnweber T; Weigel S; Welle A Biomaterials; 2011 Oct; 32(28):6719-28. PubMed ID: 21703681 [TBL] [Abstract][Full Text] [Related]
23. Engineering substrate specificity of O6-alkylguanine-DNA alkyltransferase for specific protein labeling in living cells. Juillerat A; Heinis C; Sielaff I; Barnikow J; Jaccard H; Kunz B; Terskikh A; Johnsson K Chembiochem; 2005 Jul; 6(7):1263-9. PubMed ID: 15934048 [TBL] [Abstract][Full Text] [Related]
24. Directed evolution of O6-alkylguanine-DNA alkyltransferase for efficient labeling of fusion proteins with small molecules in vivo. Juillerat A; Gronemeyer T; Keppler A; Gendreizig S; Pick H; Vogel H; Johnsson K Chem Biol; 2003 Apr; 10(4):313-7. PubMed ID: 12725859 [TBL] [Abstract][Full Text] [Related]
25. Development of an O(6)-alkylguanine-DNA alkyltransferase assay based on covalent transfer of the benzyl moiety from [benzene-3H]O(6)-benzylguanine to the protein. Ishiguro K; Shyam K; Penketh PG; Sartorelli AC Anal Biochem; 2008 Dec; 383(1):44-51. PubMed ID: 18783719 [TBL] [Abstract][Full Text] [Related]
26. Controlled assembly of SNAP-PNA-fluorophore systems on DNA templates to produce fluorescence resonance energy transfer. Gholami Z; Hanley Q Bioconjug Chem; 2014 Oct; 25(10):1820-8. PubMed ID: 25191824 [TBL] [Abstract][Full Text] [Related]
27. Synthesis and characterization of bifunctional probes for the specific labeling of fusion proteins. Kindermann M; Sielaff I; Johnsson K Bioorg Med Chem Lett; 2004 Jun; 14(11):2725-8. PubMed ID: 15125922 [TBL] [Abstract][Full Text] [Related]
28. Covalent Self-Labeling of Tagged Proteins with Chemical Fluorescent Dyes in BY-2 Cells and Arabidopsis Seedlings. Iwatate RJ; Yoshinari A; Yagi N; Grzybowski M; Ogasawara H; Kamiya M; Komatsu T; Taki M; Yamaguchi S; Frommer WB; Nakamura M Plant Cell; 2020 Oct; 32(10):3081-3094. PubMed ID: 32763980 [TBL] [Abstract][Full Text] [Related]
29. Measuring in vivo protein half-life. Bojkowska K; Santoni de Sio F; Barde I; Offner S; Verp S; Heinis C; Johnsson K; Trono D Chem Biol; 2011 Jun; 18(6):805-15. PubMed ID: 21700215 [TBL] [Abstract][Full Text] [Related]
30. SNAP-tagging the retrograde route. Johannes L; Shafaq-Zadah M Methods Cell Biol; 2013; 118():139-55. PubMed ID: 24295305 [TBL] [Abstract][Full Text] [Related]
32. Radioiodinated O(6)-Benzylguanine derivatives containing an azido function. Vaidyanathan G; White B; Affleck DJ; McDougald D; Zalutsky MR Nucl Med Biol; 2011 Jan; 38(1):77-92. PubMed ID: 21220131 [TBL] [Abstract][Full Text] [Related]
33. Beyond O Macias-Contreras M; He H; Zhu L Bioconjug Chem; 2018 Dec; 29(12):4104-4109. PubMed ID: 30411875 [TBL] [Abstract][Full Text] [Related]
34. Fluorescent labeling of SNAP-tagged proteins in cells. Lukinavičius G; Reymond L; Johnsson K Methods Mol Biol; 2015; 1266():107-18. PubMed ID: 25560070 [TBL] [Abstract][Full Text] [Related]
35. Measurement of O(6)-alkylguanine-DNA alkyltransferase activity in tumour cells using stable isotope dilution HPLC-ESI-MS/MS. Sun G; Zhao L; Fan T; Ren T; Zhong R J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Oct; 1033-1034():138-146. PubMed ID: 27544051 [TBL] [Abstract][Full Text] [Related]
36. Point mutations at multiple sites including highly conserved amino acids maintain activity, but render O6-alkylguanine-DNA alkyltransferase insensitive to O6-benzylguanine. Xu-Welliver M; Pegg AE Biochem J; 2000 Apr; 347(Pt 2):519-26. PubMed ID: 10749682 [TBL] [Abstract][Full Text] [Related]
37. 6-Carboxyfluorescein and structurally similar molecules inhibit DNA binding and repair by O⁶-alkylguanine DNA alkyltransferase. Melikishvili M; Rodgers DW; Fried MG DNA Repair (Amst); 2011 Dec; 10(12):1193-202. PubMed ID: 21982443 [TBL] [Abstract][Full Text] [Related]
38. Protection of CHO cells by mutant forms of O6-alkylguanine-DNA alkyltransferase from killing by 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU) plus O6-benzylguanine or O6-benzyl-8-oxoguanine. Loktionova NA; Xu-Welliver M; Crone TM; Kanugula S; Pegg AE Biochem Pharmacol; 1999 Jul; 58(2):237-44. PubMed ID: 10423163 [TBL] [Abstract][Full Text] [Related]
39. Investigation of the role of tyrosine-114 in the activity of human O6-alkylguanine-DNA alkyltranferase. Goodtzova K; Kanugula S; Edara S; Pegg AE Biochemistry; 1998 Sep; 37(36):12489-95. PubMed ID: 9730821 [TBL] [Abstract][Full Text] [Related]
40. Reaction and binding of oligodeoxynucleotides containing analogues of O6-methylguanine with wild-type and mutant human O6-alkylguanine-DNA alkyltransferase. Spratt TE; Wu JD; Levy DE; Kanugula S; Pegg AE Biochemistry; 1999 May; 38(21):6801-6. PubMed ID: 10346901 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]