These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 22217101)

  • 1. Effects of sleep loss and circadian rhythm on executive inhibitory control in the Stroop and Simon tasks.
    Bratzke D; Steinborn MB; Rolke B; Ulrich R
    Chronobiol Int; 2012 Feb; 29(1):55-61. PubMed ID: 22217101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of 40 hours of constant wakefulness on number comparison performance.
    Steinborn MB; Bratzke D; Rolke B; Gordijn MC; Beersma DG; Ulrich R
    Chronobiol Int; 2010 Jun; 27(4):807-25. PubMed ID: 20560712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of sleep inertia after daytime naps vary with executive load and time of day.
    Groeger JA; Lo JC; Burns CG; Dijk DJ
    Behav Neurosci; 2011 Apr; 125(2):252-60. PubMed ID: 21463024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of 40 h constant wakefulness on task-switching efficiency.
    Bratzke D; Rolke B; Steinborn MB; Ulrich R
    J Sleep Res; 2009 Jun; 18(2):167-72. PubMed ID: 19645962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of time awake and circadian rhythm upon performance on a frontal lobe task.
    Harrison Y; Jones K; Waterhouse J
    Neuropsychologia; 2007 Apr; 45(8):1966-72. PubMed ID: 17275040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time course of neurobehavioral alertness during extended wakefulness in morning- and evening-type healthy sleepers.
    Taillard J; Philip P; Claustrat B; Capelli A; Coste O; Chaumet G; Sagaspe P
    Chronobiol Int; 2011 Jul; 28(6):520-7. PubMed ID: 21797780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into behavioral vulnerability to differential sleep pressure and circadian phase from a functional ADA polymorphism.
    Reichert CF; Maire M; Gabel V; Viola AU; Kolodyazhniy V; Strobel W; Götz T; Bachmann V; Landolt HP; Cajochen C; Schmidt C
    J Biol Rhythms; 2014 Apr; 29(2):119-30. PubMed ID: 24682206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mood, alertness, and performance in response to sleep deprivation and recovery sleep in experienced shiftworkers versus non-shiftworkers.
    Wehrens SM; Hampton SM; Kerkhofs M; Skene DJ
    Chronobiol Int; 2012 Jun; 29(5):537-48. PubMed ID: 22621349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of age, circadian and homeostatic processes on inhibitory motor control: a Go/Nogo task study.
    Sagaspe P; Taillard J; Amiéva H; Beck A; Rascol O; Dartigues JF; Capelli A; Philip P
    PLoS One; 2012; 7(6):e39410. PubMed ID: 22761784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One night of sleep deprivation affects reaction time, but not interference or facilitation in a Stroop task.
    Cain SW; Silva EJ; Chang AM; Ronda JM; Duffy JF
    Brain Cogn; 2011 Jun; 76(1):37-42. PubMed ID: 21477910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of sleep deprivation on Color-Word, Emotional, and Specific Stroop interference and on self-reported anxiety.
    Sagaspe P; Sanchez-Ortuno M; Charles A; Taillard J; Valtat C; Bioulac B; Philip P
    Brain Cogn; 2006 Feb; 60(1):76-87. PubMed ID: 16314019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circadian and wake-dependent modulation of fastest and slowest reaction times during the psychomotor vigilance task.
    Graw P; Kräuchi K; Knoblauch V; Wirz-Justice A; Cajochen C
    Physiol Behav; 2004 Feb; 80(5):695-701. PubMed ID: 14984804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mismatch between subjective alertness and objective performance under sleep restriction is greatest during the biological night.
    Zhou X; Ferguson SA; Matthews RW; Sargent C; Darwent D; Kennaway DJ; Roach GD
    J Sleep Res; 2012 Feb; 21(1):40-9. PubMed ID: 21564364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circadian modulation of sequence learning under high and low sleep pressure conditions.
    Cajochen C; Knoblauch V; Wirz-Justice A; Kräuchi K; Graw P; Wallach D
    Behav Brain Res; 2004 May; 151(1-2):167-76. PubMed ID: 15084432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trait-like vulnerability of higher-order cognition and ability to maintain wakefulness during combined sleep restriction and circadian misalignment.
    Sprecher KE; Ritchie HK; Burke TM; Depner CM; Smits AN; Dorrestein PC; Fleshner M; Knight R; Lowry CA; Turek FW; Vitaterna MH; Wright KP
    Sleep; 2019 Aug; 42(8):. PubMed ID: 31070769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired inhibition after total sleep deprivation using an antisaccade task when controlling for circadian modulation of performance.
    Bocca ML; Marie S; Chavoix C
    Physiol Behav; 2014 Jan; 124():123-8. PubMed ID: 24211236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circadian rhythm in handwriting.
    Jasper I; Häussler A; Marquardt C; Hermsdörfer J
    J Sleep Res; 2009 Jun; 18(2):264-71. PubMed ID: 19645970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gender and age differences in psychomotor vigilance performance under differential sleep pressure conditions.
    Blatter K; Graw P; Münch M; Knoblauch V; Wirz-Justice A; Cajochen C
    Behav Brain Res; 2006 Apr; 168(2):312-7. PubMed ID: 16386807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sleep, circadian rhythms, and psychomotor vigilance.
    Van Dongen HP; Dinges DF
    Clin Sports Med; 2005 Apr; 24(2):237-49, vii-viii. PubMed ID: 15892921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circadian variations in the kinematics of handwriting and grip strength.
    Jasper I; Haussler A; Baur B; Marquardt C; Hermsdorfer J
    Chronobiol Int; 2009 Apr; 26(3):576-94. PubMed ID: 19360497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.