These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
351 related articles for article (PubMed ID: 22217200)
1. Size-dependent fracture of silicon nanoparticles during lithiation. Liu XH; Zhong L; Huang S; Mao SX; Zhu T; Huang JY ACS Nano; 2012 Feb; 6(2):1522-31. PubMed ID: 22217200 [TBL] [Abstract][Full Text] [Related]
2. Sandwich-lithiation and longitudinal crack in amorphous silicon coated on carbon nanofibers. Wang JW; Liu XH; Zhao K; Palmer A; Patten E; Burton D; Mao SX; Suo Z; Huang JY ACS Nano; 2012 Oct; 6(10):9158-67. PubMed ID: 22984869 [TBL] [Abstract][Full Text] [Related]
3. Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon. Chon MJ; Sethuraman VA; McCormick A; Srinivasan V; Guduru PR Phys Rev Lett; 2011 Jul; 107(4):045503. PubMed ID: 21867019 [TBL] [Abstract][Full Text] [Related]
4. Stress effects on the initial lithiation of crystalline silicon nanowires: reactive molecular dynamics simulations using ReaxFF. Ostadhossein A; Cubuk ED; Tritsaris GA; Kaxiras E; Zhang S; van Duin AC Phys Chem Chem Phys; 2015 Feb; 17(5):3832-40. PubMed ID: 25559797 [TBL] [Abstract][Full Text] [Related]
5. Self-limiting lithiation in silicon nanowires. Liu XH; Fan F; Yang H; Zhang S; Huang JY; Zhu T ACS Nano; 2013 Feb; 7(2):1495-503. PubMed ID: 23272994 [TBL] [Abstract][Full Text] [Related]
6. Quantitative fracture strength and plasticity measurements of lithiated silicon nanowires by in situ TEM tensile experiments. Kushima A; Huang JY; Li J ACS Nano; 2012 Nov; 6(11):9425-32. PubMed ID: 23025575 [TBL] [Abstract][Full Text] [Related]
7. Carbon coating may expedite the fracture of carbon-coated silicon core-shell nanoparticles during lithiation. Li W; Cao K; Wang H; Liu J; Zhou L; Yao H Nanoscale; 2016 Mar; 8(9):5254-9. PubMed ID: 26878967 [TBL] [Abstract][Full Text] [Related]
8. Lithiation-induced embrittlement of multiwalled carbon nanotubes. Liu Y; Zheng H; Liu XH; Huang S; Zhu T; Wang J; Kushima A; Hudak NS; Huang X; Zhang S; Mao SX; Qian X; Li J; Huang JY ACS Nano; 2011 Sep; 5(9):7245-53. PubMed ID: 21819128 [TBL] [Abstract][Full Text] [Related]
9. In situ electrochemical lithiation/delithiation observation of individual amorphous Si nanorods. Ghassemi H; Au M; Chen N; Heiden PA; Yassar RS ACS Nano; 2011 Oct; 5(10):7805-11. PubMed ID: 21902219 [TBL] [Abstract][Full Text] [Related]
10. Lithiation-induced fracture of silicon nanowires observed by in-situ scanning electron microscopy. Wei CY; Sun YT; Liu YL; Liu TR; Wen CY Nanotechnology; 2020 Sep; 31(36):364001. PubMed ID: 32438349 [TBL] [Abstract][Full Text] [Related]
11. Mitigating mechanical failure of crystalline silicon electrodes for lithium batteries by morphological design. An Y; Wood BC; Ye J; Chiang YM; Wang YM; Tang M; Jiang H Phys Chem Chem Phys; 2015 Jul; 17(27):17718-28. PubMed ID: 26082019 [TBL] [Abstract][Full Text] [Related]
12. Surface coating mediated swelling and fracture of silicon nanowires during lithiation. Sandu G; Brassart L; Gohy JF; Pardoen T; Melinte S; Vlad A ACS Nano; 2014 Sep; 8(9):9427-36. PubMed ID: 25133525 [TBL] [Abstract][Full Text] [Related]
13. In situ TEM study of lithiation behavior of silicon nanoparticles attached to and embedded in a carbon matrix. Gu M; Li Y; Li X; Hu S; Zhang X; Xu W; Thevuthasan S; Baer DR; Zhang JG; Liu J; Wang C ACS Nano; 2012 Sep; 6(9):8439-47. PubMed ID: 22917087 [TBL] [Abstract][Full Text] [Related]
14. First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon. Chan MK; Wolverton C; Greeley JP J Am Chem Soc; 2012 Sep; 134(35):14362-74. PubMed ID: 22817384 [TBL] [Abstract][Full Text] [Related]
15. Kinetics and fracture resistance of lithiated silicon nanostructure pairs controlled by their mechanical interaction. Lee SW; Lee HW; Ryu I; Nix WD; Gao H; Cui Y Nat Commun; 2015 Jun; 6():7533. PubMed ID: 26112834 [TBL] [Abstract][Full Text] [Related]
16. In situ transmission electron microscopy probing of native oxide and artificial layers on silicon nanoparticles for lithium ion batteries. He Y; Piper DM; Gu M; Travis JJ; George SM; Lee SH; Genc A; Pullan L; Liu J; Mao SX; Zhang JG; Ban C; Wang C ACS Nano; 2014 Nov; 8(11):11816-23. PubMed ID: 25347792 [TBL] [Abstract][Full Text] [Related]
17. In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures. Shen C; Ge M; Luo L; Fang X; Liu Y; Zhang A; Rong J; Wang C; Zhou C Sci Rep; 2016 Aug; 6():31334. PubMed ID: 27571919 [TBL] [Abstract][Full Text] [Related]
18. In situ TEM of two-phase lithiation of amorphous silicon nanospheres. McDowell MT; Lee SW; Harris JT; Korgel BA; Wang C; Nix WD; Cui Y Nano Lett; 2013 Feb; 13(2):758-64. PubMed ID: 23323680 [TBL] [Abstract][Full Text] [Related]
19. Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (de)lithiation mechanisms. Key B; Morcrette M; Tarascon JM; Grey CP J Am Chem Soc; 2011 Jan; 133(3):503-12. PubMed ID: 21171582 [TBL] [Abstract][Full Text] [Related]
20. Two-phase electrochemical lithiation in amorphous silicon. Wang JW; He Y; Fan F; Liu XH; Xia S; Liu Y; Harris CT; Li H; Huang JY; Mao SX; Zhu T Nano Lett; 2013 Feb; 13(2):709-15. PubMed ID: 23323743 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]