BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 22217415)

  • 1. Impact of aging and diet restriction on retinal function during and after acute intraocular pressure injury.
    Kong YX; van Bergen N; Bui BV; Chrysostomou V; Vingrys AJ; Trounce IA; Crowston JG
    Neurobiol Aging; 2012 Jun; 33(6):1126.e15-25. PubMed ID: 22217415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increase in mitochondrial DNA mutations impairs retinal function and renders the retina vulnerable to injury.
    Kong YX; Van Bergen N; Trounce IA; Bui BV; Chrysostomou V; Waugh H; Vingrys A; Crowston JG
    Aging Cell; 2011 Aug; 10(4):572-83. PubMed ID: 21332926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forced exercise protects the aged optic nerve against intraocular pressure injury.
    Chrysostomou V; Kezic JM; Trounce IA; Crowston JG
    Neurobiol Aging; 2014 Jul; 35(7):1722-5. PubMed ID: 24524967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional changes in the retina during and after acute intraocular pressure elevation in mice.
    Kong YX; Crowston JG; Vingrys AJ; Trounce IA; Bui VB
    Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5732-40. PubMed ID: 19643960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glial cell response and iNOS expression in the optic nerve head and retina of the rat following acute high IOP ischemia-reperfusion.
    Cho KJ; Kim JH; Park HY; Park CK
    Brain Res; 2011 Jul; 1403():67-77. PubMed ID: 21704308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of repeated IOP challenge on rat retinal function.
    He Z; Bui BV; Vingrys AJ
    Invest Ophthalmol Vis Sci; 2008 Jul; 49(7):3026-34. PubMed ID: 18326699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Axonal transport along retinal ganglion cells is grossly intact during reduced function post-injury.
    Fahy ET; Chrysostomou V; Abbott CJ; van Wijngaarden P; Crowston JG
    Exp Eye Res; 2016 May; 146():289-292. PubMed ID: 26965224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optic nerve dynein motor protein distribution changes with intraocular pressure elevation in a rat model of glaucoma.
    Martin KR; Quigley HA; Valenta D; Kielczewski J; Pease ME
    Exp Eye Res; 2006 Aug; 83(2):255-62. PubMed ID: 16546168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential changes of local blood supply in rat retinae are involved in the selective loss of retinal ganglion cells following the acute high intraocular pressure.
    Tong JB; Chen D; Zeng LP; Mo XY; Wang H; Huang J; Luo XG
    Curr Eye Res; 2010 May; 35(5):425-34. PubMed ID: 20450256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced expression of aquaporin-9 in rat optic nerve head and retina following elevated intraocular pressure.
    Naka M; Kanamori A; Negi A; Nakamura M
    Invest Ophthalmol Vis Sci; 2010 Sep; 51(9):4618-26. PubMed ID: 20357197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of canine retina and optic nerve function after acute elevation of intraocular pressure: implications for canine glaucoma treatment.
    Grozdanic SD; Matic M; Betts DM; Sakaguchi DS; Kardon RH
    Vet Ophthalmol; 2007; 10 Suppl 1():101-7. PubMed ID: 17973841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional evaluation of retina and optic nerve in the rat model of chronic ocular hypertension.
    Grozdanic SD; Kwon YH; Sakaguchi DS; Kardon RH; Sonea IM
    Exp Eye Res; 2004 Jul; 79(1):75-83. PubMed ID: 15183102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The gradient of retinal functional changes during acute intraocular pressure elevation.
    Bui BV; Edmunds B; Cioffi GA; Fortune B
    Invest Ophthalmol Vis Sci; 2005 Jan; 46(1):202-13. PubMed ID: 15623775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resistance of retinal ganglion cells to an increase in intraocular pressure is immune-dependent.
    Bakalash S; Kipnis J; Yoles E; Schwartz M
    Invest Ophthalmol Vis Sci; 2002 Aug; 43(8):2648-53. PubMed ID: 12147598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding glaucomatous damage: anatomical and functional data from ocular hypertensive rodent retinas.
    Vidal-Sanz M; Salinas-Navarro M; Nadal-Nicolás FM; Alarcón-Martínez L; Valiente-Soriano FJ; de Imperial JM; Avilés-Trigueros M; Agudo-Barriuso M; Villegas-Pérez MP
    Prog Retin Eye Res; 2012 Jan; 31(1):1-27. PubMed ID: 21946033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intravitreal injections of GDNF-loaded biodegradable microspheres are neuroprotective in a rat model of glaucoma.
    Jiang C; Moore MJ; Zhang X; Klassen H; Langer R; Young M
    Mol Vis; 2007 Sep; 13():1783-92. PubMed ID: 17960131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of intraocular pressure on optic disc topography, electroretinography, and axonal loss in a chronic pressure-induced rat model of optic nerve damage.
    Chauhan BC; Pan J; Archibald ML; LeVatte TL; Kelly ME; Tremblay F
    Invest Ophthalmol Vis Sci; 2002 Sep; 43(9):2969-76. PubMed ID: 12202517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diabetes has an additive effect on neural apoptosis in rat retina with chronically elevated intraocular pressure.
    Kanamori A; Nakamura M; Mukuno H; Maeda H; Negi A
    Curr Eye Res; 2004 Jan; 28(1):47-54. PubMed ID: 14704913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective inner retinal dysfunction precedes ganglion cell loss in a mouse glaucoma model.
    Holcombe DJ; Lengefeld N; Gole GA; Barnett NL
    Br J Ophthalmol; 2008 May; 92(5):683-8. PubMed ID: 18296504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative correlation of optic nerve pathology with ocular pressure and corneal thickness in the DBA/2 mouse model of glaucoma.
    Inman DM; Sappington RM; Horner PJ; Calkins DJ
    Invest Ophthalmol Vis Sci; 2006 Mar; 47(3):986-96. PubMed ID: 16505033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.