BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 22218173)

  • 1. A hydrological modeling framework for defining achievable performance standards for pesticides.
    Rousseau AN; Lafrance P; Lavigne MP; Savary S; Konan B; Quilbé R; Jiapizian P; Amrani M
    J Environ Qual; 2012; 41(1):52-63. PubMed ID: 22218173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of environmental thresholds for streams in agricultural watersheds.
    Chambers PA; Culp JM; Roberts ES; Bowerman M
    J Environ Qual; 2012; 41(1):1-6. PubMed ID: 22218168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT.
    Luo Y; Zhang M
    Environ Pollut; 2009 Dec; 157(12):3370-8. PubMed ID: 19616876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GIS-based procedure for site-specific risk assessment of pesticides for aquatic ecosystems.
    Sala S; Vighi M
    Ecotoxicol Environ Saf; 2008 Jan; 69(1):1-12. PubMed ID: 17935784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Establishing standards and assessment criteria for ecological instream flow needs in agricultural regions of Canada.
    Peters DL; Baird DJ; Monk WA; Armanini DG
    J Environ Qual; 2012; 41(1):41-51. PubMed ID: 22218172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soil and Water Assessment Tool model predictions of annual maximum pesticide concentrations in high vulnerability watersheds.
    Winchell MF; Peranginangin N; Srinivasan R; Chen W
    Integr Environ Assess Manag; 2018 May; 14(3):358-368. PubMed ID: 29193759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemicals of emerging concern in the Great Lakes Basin: an analysis of environmental exposures.
    Klecka G; Persoon C; Currie R
    Rev Environ Contam Toxicol; 2010; 207():1-93. PubMed ID: 20652664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward an integrated assessment of the ecological and chemical status of European river basins.
    von der Ohe PC; De Deckere E; Prüss A; Muñoz I; Wolfram G; Villagrasa M; Ginebreda A; Hein M; Brack W
    Integr Environ Assess Manag; 2009 Jan; 5(1):50-61. PubMed ID: 19132821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exposure risk assessment and evaluation of the best management practice for controlling pesticide runoff from paddy fields. Part 1: Paddy watershed monitoring.
    Vu SH; Ishihara S; Watanabe H
    Pest Manag Sci; 2006 Dec; 62(12):1193-206. PubMed ID: 17099930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined monitoring and modeling indicate the most effective agricultural best management practices.
    Easton ZM; Walter MT; Steenhuis TS
    J Environ Qual; 2008; 37(5):1798-809. PubMed ID: 18689741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using the soil and water assessment tool to estimate achievable water quality targets through implementation of beneficial management practices in an agricultural watershed.
    Yang Q; Benoy GA; Chow TL; Daigle JL; Bourque CP; Meng FR
    J Environ Qual; 2012; 41(1):64-72. PubMed ID: 22218174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A pesticide runoff model for simulating runoff losses of pesticides from agricultural lands.
    Li YR; Huang GH; Li YF; Struger J; Fischer JD
    Water Sci Technol; 2003; 47(1):33-40. PubMed ID: 12578171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of nitrogen and phosphorus criteria for streams in agricultural landscapes.
    Chambers PA; Benoy GA; Brua RB; Culp JM
    Water Sci Technol; 2011; 64(11):2185-91. PubMed ID: 22156121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Risks assessment of water pollution by pesticides at local scale (PESTEAUX project): study of polluting pressure.
    Noel S; Billo Bah B
    Commun Agric Appl Biol Sci; 2009; 74(1):165-70. PubMed ID: 20218525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scenario-based simulation of runoff-related pesticide entries into small streams on a landscape level.
    Probst M; Berenzen N; Lentzen-Godding A; Schulz R
    Ecotoxicol Environ Saf; 2005 Oct; 62(2):145-59. PubMed ID: 15953635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The slow recovery of San Francisco Bay from the legacy of organochlorine pesticides.
    Connor MS; Davis JA; Leatherbarrow J; Greenfield BK; Gunther A; Hardin D; Mumley T; Oram JJ; Werme C
    Environ Res; 2007 Sep; 105(1):87-100. PubMed ID: 16930588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the impact of changes in landuse and management practices on the diffuse pollution and retention of nitrate in a riparian floodplain.
    Krause S; Jacobs J; Voss A; Bronstert A; Zehe E
    Sci Total Environ; 2008 Jan; 389(1):149-64. PubMed ID: 17915291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phyt'Eaux Cités: application and validation of a programme to reduce surface water contamination with urban pesticides.
    Botta F; Fauchon N; Blanchoud H; Chevreuil M; Guery B
    Chemosphere; 2012 Jan; 86(2):166-76. PubMed ID: 22078267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling effectiveness of agricultural BMPs to reduce sediment load and organophosphate pesticides in surface runoff.
    Zhang X; Zhang M
    Sci Total Environ; 2011 Apr; 409(10):1949-58. PubMed ID: 21377192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pesticide transport pathways from a sloped Litchi orchard to an adjacent tropical stream as identified by hydrograph separation.
    Duffner A; Ingwersen J; Hugenschmidt C; Streck T
    J Environ Qual; 2012; 41(4):1315-23. PubMed ID: 22751076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.