These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 22218327)
1. A general strategy for performing temperature-programming in high performance liquid chromatography--further improvements in the accuracy of retention time predictions of segmented temperature gradients. Wiese S; Teutenberg T; Schmidt TC J Chromatogr A; 2012 Jan; 1222():71-80. PubMed ID: 22218327 [TBL] [Abstract][Full Text] [Related]
2. A general strategy for performing temperature-programming in high performance liquid chromatography--prediction of segmented temperature gradients. Wiese S; Teutenberg T; Schmidt TC J Chromatogr A; 2011 Sep; 1218(39):6898-906. PubMed ID: 21872258 [TBL] [Abstract][Full Text] [Related]
3. General strategy for performing temperature programming in high performance liquid chromatography: prediction of linear temperature gradients. Wiese S; Teutenberg T; Schmidt TC Anal Chem; 2011 Mar; 83(6):2227-33. PubMed ID: 21323341 [TBL] [Abstract][Full Text] [Related]
4. Prediction of elution bandwidth for purine compounds by a retention model in reversed-phase HPLC with linear-gradient elution. Jin CH; Lee JW; Row KH J Sep Sci; 2008 Jan; 31(1):23-9. PubMed ID: 18064619 [TBL] [Abstract][Full Text] [Related]
5. Combined effect of temperature and organic modifier concentration on the retention under single mode gradient conditions in reversed-phase HPLC. Pappa-Louisi A; Nikitas P; Zisi C; Papachristos K J Sep Sci; 2008 Sep; 31(16-17):2953-61. PubMed ID: 18785145 [TBL] [Abstract][Full Text] [Related]
6. Interactions between minimum run time, modifier concentration, and efficiency parameters in a high performance liquid chromatography separation. Chester TL; Stalcup AM J Chromatogr A; 2011 Jan; 1218(2):218-28. PubMed ID: 21130461 [TBL] [Abstract][Full Text] [Related]
7. Modeling the retention of neutral compounds in gradient elution RP-HPLC by means of polarity parameter models. Téllez A; Rosés M; Bosch E Anal Chem; 2009 Nov; 81(21):9135-45. PubMed ID: 19803530 [TBL] [Abstract][Full Text] [Related]
8. Novel approaches for retention time prediction of oligonucleotides in ion-pair reversed-phase high-performance liquid chromatography. Lei B; Li S; Xi L; Li J; Liu H; Yao X J Chromatogr A; 2009 May; 1216(20):4434-9. PubMed ID: 19324364 [TBL] [Abstract][Full Text] [Related]
9. Chromatographic models to predict the elution of ionizable analytes by organic modifier gradient in reversed phase liquid chromatography. Andrés A; Téllez A; Rosés M; Bosch E J Chromatogr A; 2012 Jul; 1247():71-80. PubMed ID: 22698867 [TBL] [Abstract][Full Text] [Related]
10. High-temperature reversed-phase liquid chromatography coupled to isotope ratio mass spectrometry. Zhang L; Kujawinski DM; Jochmann MA; Schmidt TC Rapid Commun Mass Spectrom; 2011 Oct; 25(20):2971-80. PubMed ID: 21953951 [TBL] [Abstract][Full Text] [Related]
11. Determination of caffeine, theobromine, and theophylline in standard reference material 2384, baking chocolate, using reversed-phase liquid chromatography. Thomas JB; Yen JH; Schantz MM; Porter BJ; Sharpless KE J Agric Food Chem; 2004 Jun; 52(11):3259-63. PubMed ID: 15161179 [TBL] [Abstract][Full Text] [Related]
12. [Determination of adenosine in food by high performance anion exchange chromatography]. Zou XL; Zeng HY; Li YQ; Mei TL; Jiang B Sichuan Da Xue Xue Bao Yi Xue Ban; 2009 Sep; 40(5):909-11, 917. PubMed ID: 19950612 [TBL] [Abstract][Full Text] [Related]
13. Combination of column temperature gradient and mobile phase flow gradient in microcolumn and capillary column high-performance liquid chromatography. Houdiere F; Fowler PW; Djordjevic NM Anal Chem; 1997 Jul; 69(13):2589-93. PubMed ID: 21639394 [TBL] [Abstract][Full Text] [Related]
14. Solvation parameter model of comprehensive two-dimensional gas chromatography separations. Seeley JV; Libby EM; Edwards KA; Seeley SK J Chromatogr A; 2009 Mar; 1216(10):1650-7. PubMed ID: 18687438 [TBL] [Abstract][Full Text] [Related]
16. Retention models for isocratic and gradient elution in reversed-phase liquid chromatography. Nikitas P; Pappa-Louisi A J Chromatogr A; 2009 Mar; 1216(10):1737-55. PubMed ID: 18838140 [TBL] [Abstract][Full Text] [Related]
17. Optimization of the separation of chlorophenols with stepwise gradient elution in reversed phase liquid chromatography. Hadjmohammadi MR; Kamel K; Fatemi MH J Sep Sci; 2007 Nov; 30(16):2687-92. PubMed ID: 17763519 [TBL] [Abstract][Full Text] [Related]
18. A stepwise strategy employing automated screening and DryLab modeling for the development of robust methods for challenging high performance liquid chromatography separations: a case study. Jayaraman K; Alexander AJ; Hu Y; Tomasella FP Anal Chim Acta; 2011 Jun; 696(1-2):116-24. PubMed ID: 21621040 [TBL] [Abstract][Full Text] [Related]
19. Optimization of separation in two-dimensional high-performance liquid chromatography by adjusting phase system selectivity and using programmed elution techniques. Jandera P; Cesla P; Hájek T; Vohralík G; Vynuchalová K; Fischer J J Chromatogr A; 2008 May; 1189(1-2):207-20. PubMed ID: 18067903 [TBL] [Abstract][Full Text] [Related]
20. Method to predict the bandwidth of elution profile under the linear gradient elution in reversed-phase HPLC. Lee JW; Row KH J Sep Sci; 2009 Jan; 32(2):221-30. PubMed ID: 19156644 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]