These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 22218647)

  • 21. Enhanced hydrogen storage properties under external electric fields of N-doped graphene with Li decoration.
    Lee S; Lee M; Chung YC
    Phys Chem Chem Phys; 2013 Mar; 15(9):3243-8. PubMed ID: 23344163
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Magneto-electronic properties of graphene nanoribbons with various edge structures passivated by phosphorus and hydrogen atoms.
    Yu ZL; Wang D; Zhu Z; Zhang ZH
    Phys Chem Chem Phys; 2015 Oct; 17(37):24020-8. PubMed ID: 26313414
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemically derived, ultrasmooth graphene nanoribbon semiconductors.
    Li X; Wang X; Zhang L; Lee S; Dai H
    Science; 2008 Feb; 319(5867):1229-32. PubMed ID: 18218865
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Energy gaps in graphene nanoribbons.
    Son YW; Cohen ML; Louie SG
    Phys Rev Lett; 2006 Nov; 97(21):216803. PubMed ID: 17155765
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theoretical study of core-loss electron energy-loss spectroscopy at graphene nanoribbon edges.
    Fujita N; Hasnip PJ; Probert MI; Yuan J
    J Phys Condens Matter; 2015 Aug; 27(30):305301. PubMed ID: 26173149
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Energetics and electronic structure of encapsulated graphene nanoribbons in carbon nanotube.
    Mandal B; Sarkar S; Sarkar P
    J Phys Chem A; 2013 Sep; 117(36):8568-75. PubMed ID: 23675973
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons.
    Ritter KA; Lyding JW
    Nat Mater; 2009 Mar; 8(3):235-42. PubMed ID: 19219032
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Clustering of Ti on a C60 surface and its effect on hydrogen storage.
    Sun Q; Wang Q; Jena P; Kawazoe Y
    J Am Chem Soc; 2005 Oct; 127(42):14582-3. PubMed ID: 16231905
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unzipping carbon nanotubes into nanoribbons upon oxidation: a first-principles study.
    Li F; Kan E; Lu R; Xiao C; Deng K; Su H
    Nanoscale; 2012 Feb; 4(4):1254-7. PubMed ID: 22252198
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Scandium and Titanium Containing Single-Walled Carbon Nanotubes for Hydrogen Storage: a Thermodynamic and First Principle Calculation.
    Mananghaya M; Yu D; Santos GN; Rodulfo E
    Sci Rep; 2016 Jun; 6():27370. PubMed ID: 27302033
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electronic and magnetic properties and structural stability of BeO sheet and nanoribbons.
    Wu W; Lu P; Zhang Z; Guo W
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4787-95. PubMed ID: 22039765
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quasiparticle energies and band gaps in graphene nanoribbons.
    Yang L; Park CH; Son YW; Cohen ML; Louie SG
    Phys Rev Lett; 2007 Nov; 99(18):186801. PubMed ID: 17995426
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Termini of bottom-up fabricated graphene nanoribbons.
    Talirz L; Söde H; Cai J; Ruffieux P; Blankenburg S; Jafaar R; Berger R; Feng X; Müllen K; Passerone D; Fasel R; Pignedoli CA
    J Am Chem Soc; 2013 Feb; 135(6):2060-3. PubMed ID: 23350872
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A gate-induced switch in zigzag graphene nanoribbons and charging effects.
    Cheraghchi H; Esmailzade H
    Nanotechnology; 2010 May; 21(20):205306. PubMed ID: 20418607
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SAM-like arrangement of thiolated graphene nanoribbons: decoupling the edge state from the metal substrate.
    Cabrera-Sanfelix P; Arnau A; Sánchez-Portal D
    Phys Chem Chem Phys; 2013 Mar; 15(9):3233-42. PubMed ID: 23344647
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physical origins of weak H2 binding on carbon nanostructures: insight from ab initio studies of chemically functionalized graphene nanoribbons.
    Ulman K; Bhaumik D; Wood BC; Narasimhan S
    J Chem Phys; 2014 May; 140(17):174708. PubMed ID: 24811656
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Planar tetracoordinate carbon strips in edge decorated graphene nanoribbon.
    Wu M; Pei Y; Zeng XC
    J Am Chem Soc; 2010 Apr; 132(16):5554-5. PubMed ID: 20355698
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering the work function of armchair graphene nanoribbons using strain and functional species: a first principles study.
    Peng X; Tang F; Copple A
    J Phys Condens Matter; 2012 Feb; 24(7):075501. PubMed ID: 22297686
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metallacarboranes: toward promising hydrogen storage metal organic frameworks.
    Singh AK; Sadrzadeh A; Yakobson BI
    J Am Chem Soc; 2010 Oct; 132(40):14126-9. PubMed ID: 20860355
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Boron and nitrogen impurities in SiC nanoribbons: an ab initio investigation.
    Costa CD; Morbec JM
    J Phys Condens Matter; 2011 May; 23(20):205504. PubMed ID: 21540516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.