These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 22218647)

  • 41. Strain effect on electronic structures of graphene nanoribbons: A first-principles study.
    Sun L; Li Q; Ren H; Su H; Shi QW; Yang J
    J Chem Phys; 2008 Aug; 129(7):074704. PubMed ID: 19044789
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The topology impact on hydrogen storage capacity of Sc-decorated ever-increasing porous graphene.
    Yasareh F; Kazempour A; Behjatmanesh-Ardakani R
    J Mol Model; 2020 Apr; 26(5):96. PubMed ID: 32266482
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of edge geometry and magnetic interaction in opening bandgap of low-dimensional graphene.
    Zhu Y; Lian J; Jiang Q
    Chemphyschem; 2014 Apr; 15(5):958-65. PubMed ID: 24616008
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ultra-narrow metallic armchair graphene nanoribbons.
    Kimouche A; Ervasti MM; Drost R; Halonen S; Harju A; Joensuu PM; Sainio J; Liljeroth P
    Nat Commun; 2015 Dec; 6():10177. PubMed ID: 26658960
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Excitonic properties of hydrogen saturation-edged armchair graphene nanoribbons.
    Wang M; Li CM
    Nanoscale; 2011 May; 3(5):2324-8. PubMed ID: 21503364
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study.
    Hu J; Ruan X; Chen YP
    Nano Lett; 2009 Jul; 9(7):2730-5. PubMed ID: 19499898
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multifunctional porous graphene for nanoelectronics and hydrogen storage: new properties revealed by first principle calculations.
    Du A; Zhu Z; Smith SC
    J Am Chem Soc; 2010 Mar; 132(9):2876-7. PubMed ID: 20155897
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Magnetotransport Properties of Graphene Nanoribbons with Zigzag Edges.
    Wu S; Liu B; Shen C; Li S; Huang X; Lu X; Chen P; Wang G; Wang D; Liao M; Zhang J; Zhang T; Wang S; Yang W; Yang R; Shi D; Watanabe K; Taniguchi T; Yao Y; Wang W; Zhang G
    Phys Rev Lett; 2018 May; 120(21):216601. PubMed ID: 29883135
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transport properties of graphene nanoribbons with side-attached organic molecules.
    Rosales L; Pacheco M; Barticevic Z; Latgé A; Orellana PA
    Nanotechnology; 2008 Feb; 19(6):065402. PubMed ID: 21730698
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electronic structure of atomic Ti chains on semiconducting graphene nanoribbons: a first-principles study.
    Kan EJ; Xiang HJ; Yang J; Hou JG
    J Chem Phys; 2007 Oct; 127(16):164706. PubMed ID: 17979370
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lateral Interfaces between Monolayer MoS
    Haastrup MJ; Mammen MHR; Rodríguez-Fernández J; Lauritsen JV
    ACS Nano; 2021 Apr; 15(4):6699-6708. PubMed ID: 33750101
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Graphene nanoribbons from unzipped carbon nanotubes: atomic structures, Raman spectroscopy, and electrical properties.
    Xie L; Wang H; Jin C; Wang X; Jiao L; Suenaga K; Dai H
    J Am Chem Soc; 2011 Jul; 133(27):10394-7. PubMed ID: 21678963
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reinforcing the tetracene-based two-dimensional C
    Subramani M; Rajamani A; Subramaniam V; Hatshan MR; Gopi S; Ramasamy S
    Environ Res; 2022 Mar; 204(Pt B):112114. PubMed ID: 34571036
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Scaling of excitons in graphene nanoribbons with armchair shaped edges.
    Zhu X; Su H
    J Phys Chem A; 2011 Nov; 115(43):11998-2003. PubMed ID: 21939213
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electronic band structures of graphene nanoribbons with self-passivating edge reconstructions.
    Tung Nguyen L; Huy Pham C; Lien Nguyen V
    J Phys Condens Matter; 2011 Jul; 23(29):295503. PubMed ID: 21737866
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hydrogen adsorption on zigzag (8,0) boron nitride nanotubes.
    Wu X; Yang J; Hou JG; Zhu Q
    J Chem Phys; 2004 Nov; 121(17):8481-5. PubMed ID: 15511171
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fundamental insights into the electronic structure of zigzag MoS2 nanoribbons.
    Yu S; Zheng W
    Phys Chem Chem Phys; 2016 Feb; 18(6):4675-83. PubMed ID: 26799649
    [TBL] [Abstract][Full Text] [Related]  

  • 58. C-BN single-walled nanotubes from hybrid connection of BN/C nanoribbons: prediction by ab initio density functional calculations.
    Du A; Chen Y; Zhu Z; Lu G; Smith SC
    J Am Chem Soc; 2009 Feb; 131(5):1682-3. PubMed ID: 19152268
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Half-metallicity in undoped and boron doped graphene nanoribbons in the presence of semilocal exchange-correlation interactions.
    Dutta S; Pati SK
    J Phys Chem B; 2008 Feb; 112(5):1333-5. PubMed ID: 18189386
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Limited robustness of edge magnetism in zigzag graphene nanoribbons with electrodes.
    Krompiewski S
    Nanotechnology; 2014 Nov; 25(46):465201. PubMed ID: 25355693
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.