These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 22218748)
1. Leaching of indaziflam applied at two rates under different rainfall situations in Florida Candler soil. Jhala AJ; Ramirez AH; Singh M Bull Environ Contam Toxicol; 2012 Mar; 88(3):326-32. PubMed ID: 22218748 [TBL] [Abstract][Full Text] [Related]
2. Sorption-desorption of indaziflam and its three metabolites in sandy soils. Trigo C; Koskinen WC; Kookana RS J Environ Sci Health B; 2014; 49(11):836-43. PubMed ID: 25190558 [TBL] [Abstract][Full Text] [Related]
3. Effect of application rate and irrigation on the movement and dissipation of indaziflam. González-Delgado AM; Shukla MK; Ashigh J; Perkins R J Environ Sci (China); 2017 Jan; 51():111-119. PubMed ID: 28115120 [TBL] [Abstract][Full Text] [Related]
4. Runoff and leaching of atrazine and alachlor on a sandy soil as affected by application in sprinkler irrigation. Abdel-Rahman AR; Wauchope RD; Truman CC; Dowler CC J Environ Sci Health B; 1999 May; 34(3):381-96. PubMed ID: 10227190 [TBL] [Abstract][Full Text] [Related]
5. Pesticide storage and release in unsaturated soil in Illinois, USA. Roy WR; Krapac IG; Chou SF; Simmons FW J Environ Sci Health B; 2001 May; 36(3):245-60. PubMed ID: 11411849 [TBL] [Abstract][Full Text] [Related]
6. Cow bonechar decreases indaziflam pre-emergence herbicidal activity in tropical soil. Mendes KF; Furtado IF; Sousa RN; Lima ADC; Mielke KC; Brochado MGDS J Environ Sci Health B; 2021; 56(6):532-539. PubMed ID: 33950786 [TBL] [Abstract][Full Text] [Related]
7. Movement of simazine in runoff water and weed control from citrus orchard as affected by reduced rate of herbicide application. Liu F; O'Connell N Bioresour Technol; 2003 Feb; 86(3):253-8. PubMed ID: 12688468 [TBL] [Abstract][Full Text] [Related]
8. Rainfall affects leaching of pre-emergent herbicide from wheat residue into the soil. Khalil Y; Flower K; Siddique KHM; Ward P PLoS One; 2019; 14(2):e0210219. PubMed ID: 30707698 [TBL] [Abstract][Full Text] [Related]
9. Mobility of indaziflam influenced by soil properties in a semi-arid area. González-Delgado AM; Ashigh J; Shukla MK; Perkins R PLoS One; 2015; 10(5):e0126100. PubMed ID: 25950921 [TBL] [Abstract][Full Text] [Related]
10. Influence of soil properties and soil moisture on the efficacy of indaziflam and flumioxazin on Kochia scoparia L. Sebastian DJ; Nissen SJ; Westra P; Shaner DL; Butters G Pest Manag Sci; 2017 Feb; 73(2):444-451. PubMed ID: 27108479 [TBL] [Abstract][Full Text] [Related]
11. Indaziflam: a new cellulose-biosynthesis-inhibiting herbicide provides long-term control of invasive winter annual grasses. Sebastian DJ; Fleming MB; Patterson EL; Sebastian JR; Nissen SJ Pest Manag Sci; 2017 Oct; 73(10):2149-2162. PubMed ID: 28436172 [TBL] [Abstract][Full Text] [Related]
12. Herbicide leaching as affected by macropore flow and within-storm rainfall intensity variation: a RZWQM simulation. Malone RW; Weatherington-Rice J; Shipitalo MJ; Fausey N; Ma L; Ahuja LR; Wauchope RD; Ma Q Pest Manag Sci; 2004 Mar; 60(3):277-85. PubMed ID: 15025239 [TBL] [Abstract][Full Text] [Related]
13. Behavior of simetryn and thiobencarb in the plough zone of rice fields. Phong TK; Nhung DT; Motobayashi T; Watanabe H Bull Environ Contam Toxicol; 2009 Dec; 83(6):794-8. PubMed ID: 19585064 [TBL] [Abstract][Full Text] [Related]
14. Sorption-desorption of indaziflam in selected agricultural soils. Alonso DG; Koskinen WC; Oliveira RS; Constantin J; Mislankar S J Agric Food Chem; 2011 Dec; 59(24):13096-101. PubMed ID: 22070170 [TBL] [Abstract][Full Text] [Related]
15. Influence of soil biochar aging on sorption of the herbicides MCPA, nicosulfuron, terbuthylazine, indaziflam, and fluoroethyldiaminotriazine. Trigo C; Spokas KA; Cox L; Koskinen WC J Agric Food Chem; 2014 Nov; 62(45):10855-60. PubMed ID: 25338136 [TBL] [Abstract][Full Text] [Related]
16. Simulating the dissipation of two herbicides using micro paddy lysimeters. Nhung DT; Phong TK; Watanabe H; Iwafune T; Thuyet DQ Chemosphere; 2009 Nov; 77(10):1393-9. PubMed ID: 19811801 [TBL] [Abstract][Full Text] [Related]
17. Leaching of trifluralin, metolachlor, and metribuzin in a clay loam soil of Louisiana. Kim JH; Feagley SE J Environ Sci Health B; 2002 Sep; 37(5):393-403. PubMed ID: 12369758 [TBL] [Abstract][Full Text] [Related]
18. Pendimethalin and oxyfluorfen degradation under two irrigation conditions over four years application. Alister CA; Gomez PA; Rojas S; Kogan M J Environ Sci Health B; 2009 May; 44(4):337-43. PubMed ID: 19365748 [TBL] [Abstract][Full Text] [Related]
19. Assessment of chemical, biochemical and ecotoxicological aspects in a mine soil amended with sludge of either urban or industrial origin. Alvarenga P; Palma P; Gonçalves AP; Baião N; Fernandes RM; de Varennes A; Vallini G; Duarte E; Cunha-Queda AC Chemosphere; 2008 Aug; 72(11):1774-81. PubMed ID: 18547605 [TBL] [Abstract][Full Text] [Related]
20. Metribuzin mobility in soil columns as affected by urea fertiliser. Singh N Pest Manag Sci; 2006 May; 62(5):402-6. PubMed ID: 16493697 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]