These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 22219282)

  • 1. Stable learning in stochastic network states.
    El Boustani S; Yger P; Frégnac Y; Destexhe A
    J Neurosci; 2012 Jan; 32(1):194-214. PubMed ID: 22219282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional mechanisms underlie the emergence of a diverse range of plasticity phenomena.
    Henderson JA; Gong P
    PLoS Comput Biol; 2018 Nov; 14(11):e1006590. PubMed ID: 30419014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning in neural networks by reinforcement of irregular spiking.
    Xie X; Seung HS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 1):041909. PubMed ID: 15169045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning reward timing in cortex through reward dependent expression of synaptic plasticity.
    Gavornik JP; Shuler MG; Loewenstein Y; Bear MF; Shouval HZ
    Proc Natl Acad Sci U S A; 2009 Apr; 106(16):6826-31. PubMed ID: 19346478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An STDP training algorithm for a spiking neural network with dynamic threshold neurons.
    Strain TJ; McDaid LJ; McGinnity TM; Maguire LP; Sayers HM
    Int J Neural Syst; 2010 Dec; 20(6):463-80. PubMed ID: 21117270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchrony detection and amplification by silicon neurons with STDP synapses.
    Bofill-i-petit A; Murray AF
    IEEE Trans Neural Netw; 2004 Sep; 15(5):1296-304. PubMed ID: 15484902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning rule of homeostatic synaptic scaling: presynaptic dependent or not.
    Liu JK
    Neural Comput; 2011 Dec; 23(12):3145-61. PubMed ID: 21919784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Representation of input structure in synaptic weights by spike-timing-dependent plasticity.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021912. PubMed ID: 20866842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons.
    Burbank KS
    PLoS Comput Biol; 2015 Dec; 11(12):e1004566. PubMed ID: 26633645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of Spike-Timing-Dependent Plasticity in Spiking Neural Systems with Noise.
    Nobukawa S; Nishimura H
    Int J Neural Syst; 2016 Aug; 26(5):1550040. PubMed ID: 26678248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Scalable Weight-Free Learning Algorithm for Regulatory Control of Cell Activity in Spiking Neuronal Networks.
    Zhang X; Foderaro G; Henriquez C; Ferrari S
    Int J Neural Syst; 2018 Mar; 28(2):1750015. PubMed ID: 28270025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computational framework for cortical learning.
    Suri RE
    Biol Cybern; 2004 Jun; 90(6):400-9. PubMed ID: 15316786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spike-timing-dependent plasticity leads to gamma band responses in a neural network.
    Fründ I; Ohl FW; Herrmann CS
    Biol Cybern; 2009 Sep; 101(3):227-40. PubMed ID: 19789891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supervised and unsupervised learning with two sites of synaptic integration.
    Körding KP; König P
    J Comput Neurosci; 2001; 11(3):207-15. PubMed ID: 11796938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Embedding multiple trajectories in simulated recurrent neural networks in a self-organizing manner.
    Liu JK; Buonomano DV
    J Neurosci; 2009 Oct; 29(42):13172-81. PubMed ID: 19846705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using the virtual brain to reveal the role of oscillations and plasticity in shaping brain's dynamical landscape.
    Roy D; Sigala R; Breakspear M; McIntosh AR; Jirsa VK; Deco G; Ritter P
    Brain Connect; 2014 Dec; 4(10):791-811. PubMed ID: 25131838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Balanced excitation and inhibition are required for high-capacity, noise-robust neuronal selectivity.
    Rubin R; Abbott LF; Sompolinsky H
    Proc Natl Acad Sci U S A; 2017 Oct; 114(44):E9366-E9375. PubMed ID: 29042519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A reward-modulated hebbian learning rule can explain experimentally observed network reorganization in a brain control task.
    Legenstein R; Chase SM; Schwartz AB; Maass W
    J Neurosci; 2010 Jun; 30(25):8400-10. PubMed ID: 20573887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. General differential Hebbian learning: Capturing temporal relations between events in neural networks and the brain.
    Zappacosta S; Mannella F; Mirolli M; Baldassarre G
    PLoS Comput Biol; 2018 Aug; 14(8):e1006227. PubMed ID: 30153263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation and maintenance of neuronal assemblies through synaptic plasticity.
    Litwin-Kumar A; Doiron B
    Nat Commun; 2014 Nov; 5():5319. PubMed ID: 25395015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.