These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 22219368)
1. Strandwise translocation of a DNA glycosylase on undamaged DNA. Qi Y; Nam K; Spong MC; Banerjee A; Sung RJ; Zhang M; Karplus M; Verdine GL Proc Natl Acad Sci U S A; 2012 Jan; 109(4):1086-91. PubMed ID: 22219368 [TBL] [Abstract][Full Text] [Related]
2. Encounter and extrusion of an intrahelical lesion by a DNA repair enzyme. Qi Y; Spong MC; Nam K; Banerjee A; Jiralerspong S; Karplus M; Verdine GL Nature; 2009 Dec; 462(7274):762-6. PubMed ID: 20010681 [TBL] [Abstract][Full Text] [Related]
3. Computational analysis of the mode of binding of 8-oxoguanine to formamidopyrimidine-DNA glycosylase. Song K; Hornak V; de Los Santos C; Grollman AP; Simmerling C Biochemistry; 2006 Sep; 45(36):10886-94. PubMed ID: 16953574 [TBL] [Abstract][Full Text] [Related]
4. Entrapment and structure of an extrahelical guanine attempting to enter the active site of a bacterial DNA glycosylase, MutM. Qi Y; Spong MC; Nam K; Karplus M; Verdine GL J Biol Chem; 2010 Jan; 285(2):1468-78. PubMed ID: 19889642 [TBL] [Abstract][Full Text] [Related]
5. Sequence-dependent structural variation in DNA undergoing intrahelical inspection by the DNA glycosylase MutM. Sung RJ; Zhang M; Qi Y; Verdine GL J Biol Chem; 2012 May; 287(22):18044-54. PubMed ID: 22465958 [TBL] [Abstract][Full Text] [Related]
6. Structure of a DNA glycosylase searching for lesions. Banerjee A; Santos WL; Verdine GL Science; 2006 Feb; 311(5764):1153-7. PubMed ID: 16497933 [TBL] [Abstract][Full Text] [Related]
7. DNA lesion recognition by the bacterial repair enzyme MutM. Fromme JC; Verdine GL J Biol Chem; 2003 Dec; 278(51):51543-8. PubMed ID: 14525999 [TBL] [Abstract][Full Text] [Related]
8. Structural Insight into the Discrimination between 8-Oxoguanine Glycosidic Conformers by DNA Repair Enzymes: A Molecular Dynamics Study of Human Oxoguanine Glycosylase 1 and Formamidopyrimidine-DNA Glycosylase. Sowlati-Hashjin S; Wetmore SD Biochemistry; 2018 Feb; 57(7):1144-1154. PubMed ID: 29320630 [TBL] [Abstract][Full Text] [Related]
9. Functional flexibility of Bacillus stearothermophilus formamidopyrimidine DNA-glycosylase. Amara P; Serre L DNA Repair (Amst); 2006 Aug; 5(8):947-58. PubMed ID: 16857432 [TBL] [Abstract][Full Text] [Related]
10. Surprising repair activities of nonpolar analogs of 8-oxoG expose features of recognition and catalysis by base excision repair glycosylases. McKibbin PL; Kobori A; Taniguchi Y; Kool ET; David SS J Am Chem Soc; 2012 Jan; 134(3):1653-61. PubMed ID: 22175854 [TBL] [Abstract][Full Text] [Related]
11. Structural and biochemical analysis of DNA helix invasion by the bacterial 8-oxoguanine DNA glycosylase MutM. Sung RJ; Zhang M; Qi Y; Verdine GL J Biol Chem; 2013 Apr; 288(14):10012-10023. PubMed ID: 23404556 [TBL] [Abstract][Full Text] [Related]
12. Residue coevolution reveals functionally important intramolecular interactions in formamidopyrimidine-DNA glycosylase. Endutkin AV; Koptelov SS; Popov AV; Torgasheva NA; Lomzov AA; Tsygankova AR; Skiba TV; Afonnikov DA; Zharkov DO DNA Repair (Amst); 2018 Sep; 69():24-33. PubMed ID: 30032016 [TBL] [Abstract][Full Text] [Related]
14. Structural and biochemical studies of a plant formamidopyrimidine-DNA glycosylase reveal why eukaryotic Fpg glycosylases do not excise 8-oxoguanine. Duclos S; Aller P; Jaruga P; Dizdaroglu M; Wallace SS; Doublié S DNA Repair (Amst); 2012 Sep; 11(9):714-25. PubMed ID: 22789755 [TBL] [Abstract][Full Text] [Related]
15. The Corynebacterium pseudotuberculosis genome contains two formamidopyrimidine-DNA glycosylase enzymes, only one of which recognizes and excises 8-oxoguanine lesion. Arantes LS; Nova LG; Resende BC; Bitar M; Coelho IE; Miyoshi A; Azevedo VA; Lara Dos Santos L; Machado CR; de Oliveira Lopes D Gene; 2016 Jan; 575(2 Pt 1):233-43. PubMed ID: 26341054 [TBL] [Abstract][Full Text] [Related]
16. Molecular dynamics simulation of the opposite-base preference and interactions in the active site of formamidopyrimidine-DNA glycosylase. Popov AV; Endutkin AV; Vorobjev YN; Zharkov DO BMC Struct Biol; 2017 May; 17(1):5. PubMed ID: 28482831 [TBL] [Abstract][Full Text] [Related]
17. A dynamic checkpoint in oxidative lesion discrimination by formamidopyrimidine-DNA glycosylase. Li H; Endutkin AV; Bergonzo C; Campbell AJ; de los Santos C; Grollman A; Zharkov DO; Simmerling C Nucleic Acids Res; 2016 Jan; 44(2):683-94. PubMed ID: 26553802 [TBL] [Abstract][Full Text] [Related]
18. Insights into the DNA repair process by the formamidopyrimidine-DNA glycosylase investigated by molecular dynamics. Amara P; Serre L; Castaing B; Thomas A Protein Sci; 2004 Aug; 13(8):2009-21. PubMed ID: 15273302 [TBL] [Abstract][Full Text] [Related]
19. DNA repair: how MutM finds the needle in a haystack. Jiricny J Curr Biol; 2010 Feb; 20(4):R145-7. PubMed ID: 20178755 [TBL] [Abstract][Full Text] [Related]
20. Structural Basis for Avoidance of Promutagenic DNA Repair by MutY Adenine DNA Glycosylase. Wang L; Lee SJ; Verdine GL J Biol Chem; 2015 Jul; 290(28):17096-105. PubMed ID: 25995449 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]