BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 22219369)

  • 1. Folding energy landscape of the thiamine pyrophosphate riboswitch aptamer.
    Anthony PC; Perez CF; García-García C; Block SM
    Proc Natl Acad Sci U S A; 2012 Jan; 109(5):1485-9. PubMed ID: 22219369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folding and ligand recognition of the TPP riboswitch aptamer at single-molecule resolution.
    Haller A; Altman RB; Soulière MF; Blanchard SC; Micura R
    Proc Natl Acad Sci U S A; 2013 Mar; 110(11):4188-93. PubMed ID: 23440214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TPP riboswitch aptamer: Role of Mg
    Padhi S; Pradhan M; Bung N; Roy A; Bulusu G
    J Mol Graph Model; 2019 May; 88():282-291. PubMed ID: 30818079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand-induced folding of the thiM TPP riboswitch investigated by a structure-based fluorescence spectroscopic approach.
    Lang K; Rieder R; Micura R
    Nucleic Acids Res; 2007; 35(16):5370-8. PubMed ID: 17693433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-molecule FRET studies on the cotranscriptional folding of a thiamine pyrophosphate riboswitch.
    Uhm H; Kang W; Ha KS; Kang C; Hohng S
    Proc Natl Acad Sci U S A; 2018 Jan; 115(2):331-336. PubMed ID: 29279370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TPP Riboswitch Populates
    Kumar S; Reddy G
    J Phys Chem B; 2022 Mar; 126(12):2369-2381. PubMed ID: 35298161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational changes in the expression domain of the Escherichia coli thiM riboswitch.
    Rentmeister A; Mayer G; Kuhn N; Famulok M
    Nucleic Acids Res; 2007; 35(11):3713-22. PubMed ID: 17517779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eukaryotic TPP riboswitch regulation of alternative splicing involving long-distance base pairing.
    Li S; Breaker RR
    Nucleic Acids Res; 2013 Mar; 41(5):3022-31. PubMed ID: 23376932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of the thiamine pyrophosphate (TPP)-sensing riboswitch in NMT1 mRNA from Neurospora crassa.
    Gong S; Du C; Wang Y
    FEBS Lett; 2020 Feb; 594(4):625-635. PubMed ID: 31664711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch.
    Serganov A; Polonskaia A; Phan AT; Breaker RR; Patel DJ
    Nature; 2006 Jun; 441(7097):1167-71. PubMed ID: 16728979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ligand-free state of the TPP riboswitch: a partially folded RNA structure.
    Ali M; Lipfert J; Seifert S; Herschlag D; Doniach S
    J Mol Biol; 2010 Feb; 396(1):153-65. PubMed ID: 19925806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linking aptamer-ligand binding and expression platform folding in riboswitches: prospects for mechanistic modeling and design.
    Aboul-ela F; Huang W; Abd Elrahman M; Boyapati V; Li P
    Wiley Interdiscip Rev RNA; 2015; 6(6):631-50. PubMed ID: 26361734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular level insights into the inhibition of gene expression by thiamine pyrophosphate (TPP) analogs for TPP riboswitch: A well-tempered metadynamics simulations study.
    Wakchaure PD; Ganguly B
    J Mol Graph Model; 2021 May; 104():107849. PubMed ID: 33545607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of Escherichia coli thiamine pyrophosphate-sensing riboswitch in the apo state.
    Lee HK; Lee YT; Fan L; Wilt HM; Conrad CE; Yu P; Zhang J; Shi G; Ji X; Wang YX; Stagno JR
    Structure; 2023 Jul; 31(7):848-859.e3. PubMed ID: 37253356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational Dynamics of thiM Riboswitch To Understand the Gene Regulation Mechanism Using Markov State Modeling and the Residual Fluctuation Network Approach.
    Kesherwani M; N H V K; Velmurugan D
    J Chem Inf Model; 2018 Aug; 58(8):1638-1651. PubMed ID: 29939019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperative and directional folding of the preQ1 riboswitch aptamer domain.
    Feng J; Walter NG; Brooks CL
    J Am Chem Soc; 2011 Mar; 133(12):4196-9. PubMed ID: 21375305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphate-group recognition by the aptamer domain of the thiamine pyrophosphate sensing riboswitch.
    Noeske J; Richter C; Stirnal E; Schwalbe H; Wöhnert J
    Chembiochem; 2006 Sep; 7(9):1451-6. PubMed ID: 16871614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic analysis of ligand binding and ligand binding-induced tertiary structure formation by the thiamine pyrophosphate riboswitch.
    Kulshina N; Edwards TE; Ferré-D'Amaré AR
    RNA; 2010 Jan; 16(1):186-96. PubMed ID: 19948769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the structure, function of thiamine pyrophosphate riboswitch, and designing small molecules for antibacterial activity.
    Wakchaure PD; Ganguly B
    Wiley Interdiscip Rev RNA; 2023; 14(4):e1774. PubMed ID: 36594112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand binding and gene control characteristics of tandem riboswitches in Bacillus anthracis.
    Welz R; Breaker RR
    RNA; 2007 Apr; 13(4):573-82. PubMed ID: 17307816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.