BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 22219638)

  • 21. Sequence analysis of betaA3, betaB3, and betaA4 crystallins completes the identification of the major proteins in young human lens.
    Lampi KJ; Ma Z; Shih M; Shearer TR; Smith JB; Smith DL; David LL
    J Biol Chem; 1997 Jan; 272(4):2268-75. PubMed ID: 8999933
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation and characterization of betaA3-crystallin associated proteinase from alpha-crystallin fraction of human lenses.
    Srivastava OP; Srivastava K; Chaves JM
    Mol Vis; 2008; 14():1872-85. PubMed ID: 18949065
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alpha B- and βA3-crystallins containing d-aspartic acids exist in a monomeric state.
    Sakaue H; Takata T; Fujii N; Sasaki H; Fujii N
    Biochim Biophys Acta; 2015 Jan; 1854(1):1-9. PubMed ID: 25450505
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crosslinking of human lens 9 kDa gammaD-crystallin fragment in vitro and in vivo.
    Srivastava OP; Srivastava K
    Mol Vis; 2003 Dec; 9():644-56. PubMed ID: 14685148
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Binding of dexamethasone by alpha-crystallin.
    Jobling AI; Stevens A; Augusteyn RC
    Invest Ophthalmol Vis Sci; 2001 Jul; 42(8):1829-32. PubMed ID: 11431449
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tissue localization and solubilities of αA-crystallin and its numerous C-terminal truncation products in pre- and postcataractous ICR/f rat lenses.
    Stella DR; Floyd KA; Grey AC; Renfrow MB; Schey KL; Barnes S
    Invest Ophthalmol Vis Sci; 2010 Oct; 51(10):5153-61. PubMed ID: 20435586
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isoelectric focusing of crystallins in microsections of calf and adult bovine lens. Identification of water-insoluble crystallins complexing under nondenaturing conditions: demonstration of chaperone activity of alpha-crystallin.
    Babizhayev MA; Bours J; Utikal KJ
    Ophthalmic Res; 1996; 28(6):365-74. PubMed ID: 9032796
    [TBL] [Abstract][Full Text] [Related]  

  • 28. One-shot LC-MS/MS analysis of post-translational modifications including oxidation and deamidation of rat lens α- and β-crystallins induced by γ-irradiation.
    Kim I; Saito T; Fujii N; Kanamoto T; Fujii N
    Amino Acids; 2016 Dec; 48(12):2855-2866. PubMed ID: 27600614
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Resistance of human betaB2-crystallin to in vivo modification.
    Zhang Z; David LL; Smith DL; Smith JB
    Exp Eye Res; 2001 Aug; 73(2):203-11. PubMed ID: 11446770
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The expression of αA- and βB1-crystallin during normal development and regeneration, and proteomic analysis for the regenerating lens in Xenopus laevis.
    Zhao Y; Ju F; Zhao Y; Wang L; Sun Z; Liu M; Gao L
    Mol Vis; 2011 Mar; 17():768-78. PubMed ID: 21527991
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of the primary targets of carbamylation in bovine lens proteins by mass spectrometry.
    Zhang J; Yan H; Harding JJ; Liu ZX; Wang X; Ruan YS
    Curr Eye Res; 2008 Nov; 33(11):963-76. PubMed ID: 19085379
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alterations in the lenticular protein profile in experimental selenite-induced cataractogenesis and prevention by ellagic acid.
    Sakthivel M; Geraldine P; Thomas PA
    Graefes Arch Clin Exp Ophthalmol; 2011 Aug; 249(8):1201-10. PubMed ID: 21455778
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cataract and the acceleration of calpain-induced beta-crystallin insolubilization occurring during normal maturation of rat lens.
    David LL; Azuma M; Shearer TR
    Invest Ophthalmol Vis Sci; 1994 Mar; 35(3):785-93. PubMed ID: 8125740
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Patterns of crystallin distribution in porcine eye lenses.
    Keenan J; Orr DF; Pierscionek BK
    Mol Vis; 2008 Jul; 14():1245-53. PubMed ID: 18615203
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the composition and origin of the urea-soluble polypeptides of the U18666A cataract.
    Cenedella RJ; Augusteyn RC
    Curr Eye Res; 1990 Sep; 9(9):805-18. PubMed ID: 2245643
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of alphaA-crystallin from high molecular weight aggregates in the normal human lens.
    Fujii N; Awakura M; Takemoto L; Inomata M; Takata T; Fujii N; Saito T
    Mol Vis; 2003 Jul; 9():315-22. PubMed ID: 12847419
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Truncation, cross-linking and interaction of crystallins and intermediate filament proteins in the aging human lens.
    Su SP; McArthur JD; Truscott RJ; Aquilina JA
    Biochim Biophys Acta; 2011 May; 1814(5):647-56. PubMed ID: 21447408
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changes in zebrafish (Danio rerio) lens crystallin content during development.
    Wages P; Horwitz J; Ding L; Corbin RW; Posner M
    Mol Vis; 2013; 19():408-17. PubMed ID: 23441112
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of crystallin modifications in the human lens cortex and nucleus using laser capture microdissection and CyDye labeling.
    Asomugha CO; Gupta R; Srivastava OP
    Mol Vis; 2010 Mar; 16():476-94. PubMed ID: 20352024
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential proteomic analyses of cataracts from rat models of type 1 and 2 diabetes.
    Su S; Leng F; Guan L; Zhang L; Ge J; Wang C; Chen S; Liu P
    Invest Ophthalmol Vis Sci; 2014 Nov; 55(12):7848-61. PubMed ID: 25406277
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.