These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

509 related articles for article (PubMed ID: 22219709)

  • 41. Coordinated regulation of intracellular pH by two glucose-sensing pathways in yeast.
    Isom DG; Page SC; Collins LB; Kapolka NJ; Taghon GJ; Dohlman HG
    J Biol Chem; 2018 Feb; 293(7):2318-2329. PubMed ID: 29284676
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Protein kinase A contributes to the negative control of Snf1 protein kinase in Saccharomyces cerevisiae.
    Barrett L; Orlova M; Maziarz M; Kuchin S
    Eukaryot Cell; 2012 Feb; 11(2):119-28. PubMed ID: 22140226
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transcriptional regulation of the protein kinase a subunits in Saccharomyces cerevisiae during fermentative growth.
    Galello F; Pautasso C; Reca S; Cañonero L; Portela P; Moreno S; Rossi S
    Yeast; 2017 Dec; 34(12):495-508. PubMed ID: 28812308
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The G protein-coupled receptor gpr1 is a nutrient sensor that regulates pseudohyphal differentiation in Saccharomyces cerevisiae.
    Lorenz MC; Pan X; Harashima T; Cardenas ME; Xue Y; Hirsch JP; Heitman J
    Genetics; 2000 Feb; 154(2):609-22. PubMed ID: 10655215
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Differential regulation of glucose transport activity in yeast by specific cAMP signatures.
    Bermejo C; Haerizadeh F; Sadoine MS; Chermak D; Frommer WB
    Biochem J; 2013 Jun; 452(3):489-97. PubMed ID: 23495665
    [TBL] [Abstract][Full Text] [Related]  

  • 46. MTH1 and RGT1 demonstrate combined haploinsufficiency in regulation of the hexose transporter genes in Saccharomyces cerevisiae.
    Dietzel KL; Ramakrishnan V; Murphy EE; Bisson LF
    BMC Genet; 2012 Dec; 13():107. PubMed ID: 23234240
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Feasting, fasting and fermenting. Glucose sensing in yeast and other cells.
    Johnston M
    Trends Genet; 1999 Jan; 15(1):29-33. PubMed ID: 10087931
    [TBL] [Abstract][Full Text] [Related]  

  • 48. SNF1/AMPK pathways in yeast.
    Hedbacker K; Carlson M
    Front Biosci; 2008 Jan; 13():2408-20. PubMed ID: 17981722
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Snf1 kinase connects nutritional pathways controlling meiosis in Saccharomyces cerevisiae.
    Honigberg SM; Lee RH
    Mol Cell Biol; 1998 Aug; 18(8):4548-55. PubMed ID: 9671464
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process.
    Rolland F; De Winde JH; Lemaire K; Boles E; Thevelein JM; Winderickx J
    Mol Microbiol; 2000 Oct; 38(2):348-58. PubMed ID: 11069660
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Springing into Action: Reg2 Negatively Regulates Snf1 Protein Kinase and Facilitates Recovery from Prolonged Glucose Starvation in Saccharomyces cerevisiae.
    Maziarz M; Shevade A; Barrett L; Kuchin S
    Appl Environ Microbiol; 2016 Jul; 82(13):3875-3885. PubMed ID: 27107116
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Glucose signaling in Saccharomyces cerevisiae.
    Santangelo GM
    Microbiol Mol Biol Rev; 2006 Mar; 70(1):253-82. PubMed ID: 16524925
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Insulin-like signaling in yeast: modulation of protein phosphatase 2A, protein kinase A, cAMP-specific phosphodiesterase, and glycosyl-phosphatidylinositol-specific phospholipase C activities.
    Müller G; Grey S; Jung C; Bandlow W
    Biochemistry; 2000 Feb; 39(6):1475-88. PubMed ID: 10684630
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tpk3 and Snf1 protein kinases regulate Rgt1 association with Saccharomyces cerevisiae HXK2 promoter.
    Palomino A; Herrero P; Moreno F
    Nucleic Acids Res; 2006; 34(5):1427-38. PubMed ID: 16528100
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The glucose repression and RAS-cAMP signal transduction pathways of Saccharomyces cerevisiae each affect RNA processing and the synthesis of a reporter protein.
    Tung KS; Hopper AK
    Mol Gen Genet; 1995 Apr; 247(1):48-54. PubMed ID: 7715603
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mth1 receives the signal given by the glucose sensors Snf3 and Rgt2 in Saccharomyces cerevisiae.
    Lafuente MJ; Gancedo C; Jauniaux JC; Gancedo JM
    Mol Microbiol; 2000 Jan; 35(1):161-72. PubMed ID: 10632886
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Grr1 of Saccharomyces cerevisiae is connected to the ubiquitin proteolysis machinery through Skp1: coupling glucose sensing to gene expression and the cell cycle.
    Li FN; Johnston M
    EMBO J; 1997 Sep; 16(18):5629-38. PubMed ID: 9312022
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synergistic inhibition of APC/C by glucose and activated Ras proteins can be mediated by each of the Tpk1-3 proteins in Saccharomyces cerevisiae.
    Bolte M; Dieckhoff P; Krause C; Braus GH; Irniger S
    Microbiology (Reading); 2003 May; 149(Pt 5):1205-1216. PubMed ID: 12724382
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Gpr1p, a putative G-protein coupled receptor, regulates glucose-dependent cellular cAMP level in yeast Saccharomyces cerevisiae.
    Yun CW; Tamaki H; Nakayama R; Yamamoto K; Kumagai H
    Biochem Biophys Res Commun; 1998 Nov; 252(1):29-33. PubMed ID: 9813141
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Robustness of Nutrient Signaling Is Maintained by Interconnectivity Between Signal Transduction Pathways.
    Welkenhuysen N; Schnitzer B; Österberg L; Cvijovic M
    Front Physiol; 2018; 9():1964. PubMed ID: 30719010
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.