These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 22220580)
1. Reactive silver inks for patterning high-conductivity features at mild temperatures. Walker SB; Lewis JA J Am Chem Soc; 2012 Jan; 134(3):1419-21. PubMed ID: 22220580 [TBL] [Abstract][Full Text] [Related]
2. Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity. Shen W; Zhang X; Huang Q; Xu Q; Song W Nanoscale; 2014; 6(3):1622-8. PubMed ID: 24337051 [TBL] [Abstract][Full Text] [Related]
3. Conductive inks with a "built-in" mechanism that enables sintering at room temperature. Grouchko M; Kamyshny A; Mihailescu CF; Anghel DF; Magdassi S ACS Nano; 2011 Apr; 5(4):3354-9. PubMed ID: 21438563 [TBL] [Abstract][Full Text] [Related]
4. 3D printing of highly conductive silver architectures enabled to sinter at low temperatures. Kim JH; Lee S; Wajahat M; Ahn J; Pyo J; Chang WS; Seol SK Nanoscale; 2019 Oct; 11(38):17682-17688. PubMed ID: 31539002 [TBL] [Abstract][Full Text] [Related]
5. Self-catalyzed copper-silver complex inks for low-cost fabrication of highly oxidation-resistant and conductive copper-silver hybrid tracks at a low temperature below 100 °C. Li W; Li CF; Lang F; Jiu J; Ueshima M; Wang H; Liu ZQ; Suganuma K Nanoscale; 2018 Mar; 10(11):5254-5263. PubMed ID: 29498383 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics. Zhang Z; Zhang X; Xin Z; Deng M; Wen Y; Song Y Nanotechnology; 2011 Oct; 22(42):425601. PubMed ID: 21937786 [TBL] [Abstract][Full Text] [Related]
7. Interface Modified Flexible Printed Conductive Films via Ag Meng Y; Ma T; Pavinatto FJ; MacKenzie JD ACS Appl Mater Interfaces; 2019 Mar; 11(9):9190-9196. PubMed ID: 30742404 [TBL] [Abstract][Full Text] [Related]
8. Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics. Li Y; Wu Y; Ong BS J Am Chem Soc; 2005 Mar; 127(10):3266-7. PubMed ID: 15755129 [TBL] [Abstract][Full Text] [Related]
9. Robust Design of a Particle-Free Silver-Organo-Complex Ink with High Conductivity and Inkjet Stability for Flexible Electronics. Vaseem M; McKerricher G; Shamim A ACS Appl Mater Interfaces; 2016 Jan; 8(1):177-86. PubMed ID: 26713357 [TBL] [Abstract][Full Text] [Related]
10. Fast preparation of printable highly conductive polymer nanocomposites by thermal decomposition of silver carboxylate and sintering of silver nanoparticles. Zhang R; Lin W; Moon KS; Wong CP ACS Appl Mater Interfaces; 2010 Sep; 2(9):2637-45. PubMed ID: 20735013 [TBL] [Abstract][Full Text] [Related]
11. Silver conductive features on flexible substrates from a thermally accelerated chain reaction at low sintering temperatures. Chen SP; Kao ZK; Lin JL; Liao YC ACS Appl Mater Interfaces; 2012 Dec; 4(12):7064-8. PubMed ID: 23186160 [TBL] [Abstract][Full Text] [Related]
13. Application of metallic inks based on nickel-silver core-shell nanoparticles for fabrication of conductive films. Pajor-Świerzy A; Socha R; Pawłowski R; Warszyński P; Szczepanowicz K Nanotechnology; 2019 May; 30(22):225301. PubMed ID: 30721883 [TBL] [Abstract][Full Text] [Related]
14. Highly sensitive antenna using inkjet overprinting with particle-free conductive inks. Komoda N; Nogi M; Suganuma K; Otsuka K ACS Appl Mater Interfaces; 2012 Nov; 4(11):5732-6. PubMed ID: 23075475 [TBL] [Abstract][Full Text] [Related]
15. [Synthesis of particle-free silver conductive ink and investigation of fabrication of conductive film by printing]. Nie XL; Wang H; Zou J Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Nov; 32(11):3089-92. PubMed ID: 23387185 [TBL] [Abstract][Full Text] [Related]
16. Polymer Surface Engineering for Efficient Printing of Highly Conductive Metal Nanoparticle Inks. Agina EV; Sizov AS; Yablokov MY; Borshchev OV; Bessonov AA; Kirikova MN; Bailey MJ; Ponomarenko SA ACS Appl Mater Interfaces; 2015 Jun; 7(22):11755-64. PubMed ID: 25984650 [TBL] [Abstract][Full Text] [Related]
17. 3D polymer objects with electronic components interconnected via conformally printed electrodes. Jo Y; Kim JY; Jung S; Ahn BY; Lewis JA; Choi Y; Jeong S Nanoscale; 2017 Oct; 9(39):14798-14803. PubMed ID: 28956046 [TBL] [Abstract][Full Text] [Related]
18. Self-patterning of fine metal electrodes by means of the formation of isolated silver nanoclusters embedded in polyaniline. Shin DY; Kim I Nanotechnology; 2009 Oct; 20(41):415301. PubMed ID: 19762945 [TBL] [Abstract][Full Text] [Related]
19. Enhanced electrical and mechanical properties of silver nanoplatelet-based conductive features direct printed on a flexible substrate. Lee YI; Kim S; Jung SB; Myung NV; Choa YH ACS Appl Mater Interfaces; 2013 Jul; 5(13):5908-13. PubMed ID: 23786607 [TBL] [Abstract][Full Text] [Related]
20. Ring stain effect at room temperature in silver nanoparticles yields high electrical conductivity. Magdassi S; Grouchko M; Toker D; Kamyshny A; Balberg I; Millo O Langmuir; 2005 Nov; 21(23):10264-7. PubMed ID: 16262272 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]