These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 22220837)

  • 1. A role for a single-stranded junction in RNA binding and specificity by the Tetrahymena group I ribozyme.
    Shi X; Solomatin SV; Herschlag D
    J Am Chem Soc; 2012 Feb; 134(4):1910-3. PubMed ID: 22220837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a local folding event of the Tetrahymena group I ribozyme: effects of oligonucleotide substrate length, pH, and temperature on the two substrate binding steps.
    Narlikar GJ; Bartley LE; Khosla M; Herschlag D
    Biochemistry; 1999 Oct; 38(43):14192-204. PubMed ID: 10571993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tertiary interactions with the internal guide sequence mediate docking of the P1 helix into the catalytic core of the Tetrahymena ribozyme.
    Strobel SA; Cech TR
    Biochemistry; 1993 Dec; 32(49):13593-604. PubMed ID: 7504953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for processivity and two-step binding of the RNA substrate from studies of J1/2 mutants of the Tetrahymena ribozyme.
    Herschlag D
    Biochemistry; 1992 Feb; 31(5):1386-99. PubMed ID: 1736996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A single-stranded junction modulates nanosecond motional ordering of the substrate recognition duplex of a group I ribozyme.
    Nguyen P; Shi X; Sigurdsson ST; Herschlag D; Qin PZ
    Chembiochem; 2013 Sep; 14(14):1720-3. PubMed ID: 23900919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motions of the substrate recognition duplex in a group I intron assessed by site-directed spin labeling.
    Grant GP; Boyd N; Herschlag D; Qin PZ
    J Am Chem Soc; 2009 Mar; 131(9):3136-7. PubMed ID: 19220053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations in a nonconserved sequence of the Tetrahymena ribozyme increase activity and specificity.
    Young B; Herschlag D; Cech TR
    Cell; 1991 Nov; 67(5):1007-19. PubMed ID: 1959129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA substrate binding site in the catalytic core of the Tetrahymena ribozyme.
    Pyle AM; Murphy FL; Cech TR
    Nature; 1992 Jul; 358(6382):123-8. PubMed ID: 1377367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations in the Tetrahymena ribozyme internal guide sequence: effects on docking of the P1 helix into the catalytic core and correlation with catalytic activity.
    Campbell TB; Cech TR
    Biochemistry; 1996 Sep; 35(35):11493-502. PubMed ID: 8784205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of long-range tertiary interactions in limiting dynamics of the Tetrahymena group I ribozyme.
    Shi X; Bisaria N; Benz-Moy TL; Bonilla S; Pavlichin DS; Herschlag D
    J Am Chem Soc; 2014 May; 136(18):6643-8. PubMed ID: 24738560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme.
    Strauss-Soukup JK; Strobel SA
    J Mol Biol; 2000 Sep; 302(2):339-58. PubMed ID: 10970738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitating tertiary binding energies of 2' OH groups on the P1 duplex of the Tetrahymena ribozyme: intrinsic binding energy in an RNA enzyme.
    Narlikar GJ; Khosla M; Usman N; Herschlag D
    Biochemistry; 1997 Mar; 36(9):2465-77. PubMed ID: 9054551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploration of the transition state for tertiary structure formation between an RNA helix and a large structured RNA.
    Bartley LE; Zhuang X; Das R; Chu S; Herschlag D
    J Mol Biol; 2003 May; 328(5):1011-26. PubMed ID: 12729738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-function analysis from the outside in: long-range tertiary contacts in RNA exhibit distinct catalytic roles.
    Benz-Moy TL; Herschlag D
    Biochemistry; 2011 Oct; 50(40):8733-55. PubMed ID: 21815635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A rearrangement of the guanosine-binding site establishes an extended network of functional interactions in the Tetrahymena group I ribozyme active site.
    Forconi M; Sengupta RN; Piccirilli JA; Herschlag D
    Biochemistry; 2010 Mar; 49(12):2753-62. PubMed ID: 20175542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamics and kinetics for base-pair opening in the P1 duplex of the Tetrahymena group I ribozyme.
    Lee JH; Pardi A
    Nucleic Acids Res; 2007; 35(9):2965-74. PubMed ID: 17439958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translocation of an RNA duplex on a ribozyme.
    Strobel SA; Cech TR
    Nat Struct Biol; 1994 Jan; 1(1):13-7. PubMed ID: 7544680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the dynamics of the P1 helix within the Tetrahymena group I intron.
    Shi X; Mollova ET; Pljevaljcić G; Millar DP; Herschlag D
    J Am Chem Soc; 2009 Jul; 131(27):9571-8. PubMed ID: 19537712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct demonstration of the catalytic role of binding interactions in an enzymatic reaction.
    Narlikar GJ; Herschlag D
    Biochemistry; 1998 Jul; 37(28):9902-11. PubMed ID: 9665695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exocyclic amine of the conserved G.U pair at the cleavage site of the Tetrahymena ribozyme contributes to 5'-splice site selection and transition state stabilization.
    Strobel SA; Cech TR
    Biochemistry; 1996 Jan; 35(4):1201-11. PubMed ID: 8573575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.