These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 22220837)

  • 21. An important base triple anchors the substrate helix recognition surface within the Tetrahymena ribozyme active site.
    Szewczak AA; Ortoleva-Donnelly L; Zivarts MV; Oyelere AK; Kazantsev AV; Strobel SA
    Proc Natl Acad Sci U S A; 1999 Sep; 96(20):11183-8. PubMed ID: 10500151
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of duplex rigidity for stability and specificity in RNA tertiary structure.
    Narlikar GJ; Bartley LE; Herschlag D
    Biochemistry; 2000 May; 39(20):6183-9. PubMed ID: 10821693
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Catalysis of RNA cleavage by a ribozyme derived from the group I intron of Anabaena pre-tRNA(Leu).
    Zaug AJ; Dávila-Aponte JA; Cech TR
    Biochemistry; 1994 Dec; 33(49):14935-47. PubMed ID: 7527660
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probing the role of metal ions in RNA catalysis: kinetic and thermodynamic characterization of a metal ion interaction with the 2'-moiety of the guanosine nucleophile in the Tetrahymena group I ribozyme.
    Shan SO; Herschlag D
    Biochemistry; 1999 Aug; 38(34):10958-75. PubMed ID: 10460151
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Probing the role of a secondary structure element at the 5'- and 3'-splice sites in group I intron self-splicing: the tetrahymena L-16 ScaI ribozyme reveals a new role of the G.U pair in self-splicing.
    Karbstein K; Lee J; Herschlag D
    Biochemistry; 2007 Apr; 46(16):4861-75. PubMed ID: 17385892
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Minor groove recognition of the conserved G.U pair at the Tetrahymena ribozyme reaction site.
    Strobel SA; Cech TR
    Science; 1995 Feb; 267(5198):675-9. PubMed ID: 7839142
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ribozyme recognition of RNA by tertiary interactions with specific ribose 2'-OH groups.
    Pyle AM; Cech TR
    Nature; 1991 Apr; 350(6319):628-31. PubMed ID: 1708111
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site.
    Guo F; Gooding AR; Cech TR
    Mol Cell; 2004 Nov; 16(3):351-62. PubMed ID: 15525509
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Replacement of the conserved G.U with a G-C pair at the cleavage site of the Tetrahymena ribozyme decreases binding, reactivity, and fidelity.
    Pyle AM; Moran S; Strobel SA; Chapman T; Turner DH; Cech TR
    Biochemistry; 1994 Nov; 33(46):13856-63. PubMed ID: 7947794
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermodynamics and kinetics for the helix formation of the P3 region in Tetrahymena ribozyme.
    Sugimoto N; Monden N; Sasaki M; Yamakage S; Takaku H
    Nucleic Acids Symp Ser; 1990; (22):45-6. PubMed ID: 2101912
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nonspecific binding to structured RNA and preferential unwinding of an exposed helix by the CYT-19 protein, a DEAD-box RNA chaperone.
    Tijerina P; Bhaskaran H; Russell R
    Proc Natl Acad Sci U S A; 2006 Nov; 103(45):16698-703. PubMed ID: 17075070
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contributions of 2'-hydroxyl groups of the RNA substrate to binding and catalysis by the Tetrahymena ribozyme. An energetic picture of an active site composed of RNA.
    Herschlag D; Eckstein F; Cech TR
    Biochemistry; 1993 Aug; 32(32):8299-311. PubMed ID: 7688572
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanistic investigations of a ribozyme derived from the Tetrahymena group I intron: insights into catalysis and the second step of self-splicing.
    Mei R; Herschlag D
    Biochemistry; 1996 May; 35(18):5796-809. PubMed ID: 8639540
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Joining the two domains of a group I ribozyme to form the catalytic core.
    Tanner MA; Cech TR
    Science; 1997 Feb; 275(5301):847-9. PubMed ID: 9012355
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Movement of the guide sequence during RNA catalysis by a group I ribozyme.
    Wang JF; Downs WD; Cech TR
    Science; 1993 Apr; 260(5107):504-8. PubMed ID: 7682726
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biogenic triamine and tetraamine activate core catalytic ability of Tetrahymena group I ribozyme in the absence of its large activator module.
    Gulshan MA; Rahman MM; Matsumura S; Higuchi T; Umezawa N; Ikawa Y
    Biochem Biophys Res Commun; 2018 Feb; 496(2):594-600. PubMed ID: 29339152
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fast folding of a ribozyme by stabilizing core interactions: evidence for multiple folding pathways in RNA.
    Pan J; Deras ML; Woodson SA
    J Mol Biol; 2000 Feb; 296(1):133-44. PubMed ID: 10656822
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modulating the splicing activity of Tetrahymena ribozyme via RNA self-assembly.
    Hasegawa S; Rao J
    FEBS Lett; 2006 Mar; 580(6):1592-6. PubMed ID: 16472807
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Addition of an extra substrate binding site and partial destabilization of stem structures in HDV ribozyme give rise to high sequence-specificity for its target RNA.
    Hori T; Guo F; Uesugi S
    Nucleosides Nucleotides Nucleic Acids; 2006; 25(4-6):489-501. PubMed ID: 16838841
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dissection of the role of the conserved G.U pair in group I RNA self-splicing.
    Knitt DS; Narlikar GJ; Herschlag D
    Biochemistry; 1994 Nov; 33(46):13864-79. PubMed ID: 7947795
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.