These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 22220861)

  • 1. QTL linkage mapping of zebra finch beak color shows an oligogenic control of a sexually selected trait.
    Schielzeth H; Kempenaers B; Ellegren H; Forstmeier W
    Evolution; 2012 Jan; 66(1):18-30. PubMed ID: 22220861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genic capture and the genetic basis of sexually selected traits in the zebra finch.
    Birkhead TR; Pellatt EJ; Matthews IM; Roddis NJ; Hunter FM; McPhie F; Castillo-Juarez H
    Evolution; 2006 Nov; 60(11):2389-98. PubMed ID: 17236429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From beavis to beak color: a simulation study to examine how much qtl mapping can reveal about the genetic architecture of quantitative traits.
    Slate J
    Evolution; 2013 May; 67(5):1251-62. PubMed ID: 23617906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QTL and quantitative genetic analysis of beak morphology reveals patterns of standing genetic variation in an Estrildid finch.
    Knief U; Schielzeth H; Kempenaers B; Ellegren H; Forstmeier W
    Mol Ecol; 2012 Aug; 21(15):3704-17. PubMed ID: 22694741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. No heightened condition dependence of zebra finch ornaments--a quantitative genetic approach.
    Bolund E; Schielzeth H; Forstmeier W
    J Evol Biol; 2010 Mar; 23(3):586-97. PubMed ID: 20074304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QTL linkage mapping of wing length in zebra finch using genome-wide single nucleotide polymorphisms markers.
    Schielzeth H; Forstmeier W; Kempenaers B; Ellegren H
    Mol Ecol; 2012 Jan; 21(2):329-39. PubMed ID: 22111790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sex steroid dependence of carotenoid-based coloration in female zebra finches.
    McGraw KJ
    Physiol Behav; 2006 Jul; 88(4-5):347-52. PubMed ID: 16740280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carotenoid accumulation in the tissues of zebra finches: predictors of integumentary pigmentation and implications for carotenoid allocation strategies.
    McGraw KJ; Toomey MB
    Physiol Biochem Zool; 2010; 83(1):97-109. PubMed ID: 19929687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sex chromosome linked genetic variance and the evolution of sexual dimorphism of quantitative traits.
    Husby A; Schielzeth H; Forstmeier W; Gustafsson L; Qvarnström A
    Evolution; 2013 Mar; 67(3):609-19. PubMed ID: 23461313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental stress affects the expression of a carotenoid-based sexual trait in male zebra finches.
    Eraud C; Devevey G; Gaillard M; Prost J; Sorci G; Faivre B
    J Exp Biol; 2007 Oct; 210(Pt 20):3571-8. PubMed ID: 17921158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide association mapping identifies the genetic basis of discrete and quantitative variation in sexual weaponry in a wild sheep population.
    Johnston SE; McEwan JC; Pickering NK; Kijas JW; Beraldi D; Pilkington JG; Pemberton JM; Slate J
    Mol Ecol; 2011 Jun; 20(12):2555-66. PubMed ID: 21651634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The adaptive genomic landscape of beak morphology in Darwin's finches.
    Lawson LP; Petren K
    Mol Ecol; 2017 Oct; 26(19):4978-4989. PubMed ID: 28475225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel lipoprotein-mediated mechanism controlling sexual attractiveness in a colorful songbird.
    McGraw KJ; Parker RS
    Physiol Behav; 2006 Jan; 87(1):103-8. PubMed ID: 16202433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative genetics of sexually dimorphic traits and capture of genetic variance by a sexually-selected condition-dependent ornament in red junglefowl (Gallus gallus).
    Parker TH; Garant D
    J Evol Biol; 2004 Nov; 17(6):1277-85. PubMed ID: 15525412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genic capture, sex linkage, and the heritability of fitness.
    Connallon T
    Am Nat; 2010 May; 175(5):564-76. PubMed ID: 20331359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Association mapping of morphological traits in wild and captive zebra finches: reliable within, but not between populations.
    Knief U; Schielzeth H; Backström N; Hemmrich-Stanisak G; Wittig M; Franke A; Griffith SC; Ellegren H; Kempenaers B; Forstmeier W
    Mol Ecol; 2017 Mar; 26(5):1285-1305. PubMed ID: 28100011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bill redness is positively associated with reproduction and survival in male and female zebra finches.
    Simons MJ; Briga M; Koetsier E; Folkertsma R; Wubs MD; Dijkstra C; Verhulst S
    PLoS One; 2012; 7(7):e40721. PubMed ID: 22808243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partitioning of genetic variation across the genome using multimarker methods in a wild bird population.
    Robinson MR; Santure AW; Decauwer I; Sheldon BC; Slate J
    Mol Ecol; 2013 Aug; 22(15):3963-80. PubMed ID: 23848161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonautosomal genetic variation in carotenoid coloration.
    Evans SR; Schielzeth H; Forstmeier W; Sheldon BC; Husby A
    Am Nat; 2014 Sep; 184(3):374-83. PubMed ID: 25141146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Population genomics fits the bill: genetics of adaptive beak variation in Darwin's finches.
    Mundy NI
    Mol Ecol; 2016 Nov; 25(21):5265-5266. PubMed ID: 27785886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.