These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 22220884)

  • 21. The protective effect of rapid cold-hardening develops more quickly in frozen versus supercooled larvae of the Antarctic midge, Belgica antarctica.
    Kawarasaki Y; Teets NM; Denlinger DL; Lee RE
    J Exp Biol; 2013 Oct; 216(Pt 20):3937-45. PubMed ID: 23868837
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid cold-hardening in Zaprionus vittiger (Coquillett) (Diptera: Drosophilidae).
    Nyamukondiwa C; Terblanche JS
    Cryo Letters; 2010; 31(6):504-12. PubMed ID: 21410019
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence for a rapid cold hardening response in cultured
    Nadeau EAW; Teets NM
    J Exp Biol; 2020 Jan; 223(Pt 2):. PubMed ID: 31862846
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapid cold hardening improves recovery of ion homeostasis and chill coma recovery time in the migratory locust, Locusta migratoria.
    Findsen A; Andersen JL; Calderon S; Overgaard J
    J Exp Biol; 2013 May; 216(Pt 9):1630-7. PubMed ID: 23348947
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo and in vitro rapid cold-hardening protects cells from cold-shock injury in the flesh fly.
    Yi SX; Lee RE
    J Comp Physiol B; 2004 Nov; 174(8):611-5. PubMed ID: 15503055
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Induced cold-tolerance mechanisms depend on duration of acclimation in the chill-sensitive Folsomia candida (Collembola).
    Waagner D; Holmstrup M; Bayley M; Sørensen JG
    J Exp Biol; 2013 Jun; 216(Pt 11):1991-2000. PubMed ID: 23393277
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of developmental stage on cold shock resistance and ability to cold-harden in Drosophila melanogaster.
    Jensen D; Overgaard J; Sørensen JG
    J Insect Physiol; 2007 Feb; 53(2):179-86. PubMed ID: 17234205
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Desiccation enhances rapid cold-hardening in the flesh fly Sarcophaga bullata: evidence for cross tolerance between rapid physiological responses.
    Yi SX; Gantz JD; Lee RE
    J Comp Physiol B; 2017 Jan; 187(1):79-86. PubMed ID: 27568301
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rapid Cold Hardening Capacity and Its Impact on Performance of Russian Wheat Aphid (Hemiptera: Aphididae).
    Saeidi F; Moharramipour S; Mikani A
    Environ Entomol; 2017 Aug; 46(4):954-959. PubMed ID: 28541434
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid cold hardening: ecological relevance, physiological mechanisms and new perspectives.
    Teets NM; Gantz JD; Kawarasaki Y
    J Exp Biol; 2020 Feb; 223(Pt 3):. PubMed ID: 32051174
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera, Glossinidae): implications for forecasting climate change impacts.
    Terblanche JS; Clusella-Trullas S; Deere JA; Chown SL
    J Insect Physiol; 2008 Jan; 54(1):114-27. PubMed ID: 17889900
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Consequences of heat hardening on a field fitness component in Drosophila depend on environmental temperature.
    Loeschcke V; Hoffmann AA
    Am Nat; 2007 Feb; 169(2):175-83. PubMed ID: 17211802
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermal biology, population fluctuations and implications of temperature extremes for the management of two globally significant insect pests.
    Nyamukondiwa C; Weldon CW; Chown SL; le Roux PC; Terblanche JS
    J Insect Physiol; 2013 Dec; 59(12):1199-211. PubMed ID: 24080125
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Susceptibility of Ceratitis capitata Wiedemann (Diptera: Tephritidae) to entomopathogenic fungi.
    Ali A; Sermann H; Büttner C
    Commun Agric Appl Biol Sci; 2008; 73(3):589-96. PubMed ID: 19226799
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Post pupariation cold storage of three species of flies: increasing chilling tolerance by acclimation and recurrent recovery periods.
    Leopold RA; Rojas RR; Atkinson PW
    Cryobiology; 1998 May; 36(3):213-24. PubMed ID: 9597741
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid cold hardening and expression of heat shock protein genes in the B-biotype Bemisia tabaci.
    Wang H; Lei Z; Li X; Oetting RD
    Environ Entomol; 2011 Feb; 40(1):132-9. PubMed ID: 22182622
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Meat Feeding Restricts Rapid Cold Hardening Response and Increases Thermal Activity Thresholds of Adult Blow Flies, Calliphora vicina (Diptera: Calliphoridae).
    Coleman PC; Bale JS; Hayward SA
    PLoS One; 2015; 10(7):e0131301. PubMed ID: 26196923
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid cold-hardening in larvae of the Antarctic midge Belgica antarctica: cellular cold-sensing and a role for calcium.
    Teets NM; Elnitsky MA; Benoit JB; Lopez-Martinez G; Denlinger DL; Lee RE
    Am J Physiol Regul Integr Comp Physiol; 2008 Jun; 294(6):R1938-46. PubMed ID: 18417647
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Brief carbon dioxide exposure blocks heat hardening but not cold acclimation in Drosophila melanogaster.
    Milton CC; Partridge L
    J Insect Physiol; 2008 Jan; 54(1):32-40. PubMed ID: 17884085
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phenotypic plasticity of gas exchange pattern and water loss in Scarabaeus spretus (Coleoptera: Scarabaeidae): deconstructing the basis for metabolic rate variation.
    Terblanche JS; Clusella-Trullas S; Chown SL
    J Exp Biol; 2010 Sep; 213(Pt 17):2940-9. PubMed ID: 20709922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.