These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
317 related articles for article (PubMed ID: 22220984)
1. The physiological functions of mammalian endoplasmic oxidoreductin 1: on disulfides and more. Ramming T; Appenzeller-Herzog C Antioxid Redox Signal; 2012 May; 16(10):1109-18. PubMed ID: 22220984 [TBL] [Abstract][Full Text] [Related]
2. Molecular mechanisms regulating oxidative activity of the Ero1 family in the endoplasmic reticulum. Tavender TJ; Bulleid NJ Antioxid Redox Signal; 2010 Oct; 13(8):1177-87. PubMed ID: 20486761 [TBL] [Abstract][Full Text] [Related]
3. A PDI-catalyzed thiol-disulfide switch regulates the production of hydrogen peroxide by human Ero1. Ramming T; Okumura M; Kanemura S; Baday S; Birk J; Moes S; Spiess M; Jenö P; Bernèche S; Inaba K; Appenzeller-Herzog C Free Radic Biol Med; 2015 Jun; 83():361-72. PubMed ID: 25697776 [TBL] [Abstract][Full Text] [Related]
4. The endoplasmic reticulum sulfhydryl oxidase Ero1β drives efficient oxidative protein folding with loose regulation. Wang L; Zhu L; Wang CC Biochem J; 2011 Feb; 434(1):113-21. PubMed ID: 21091435 [TBL] [Abstract][Full Text] [Related]
5. Ero1-PDI interactions, the response to redox flux and the implications for disulfide bond formation in the mammalian endoplasmic reticulum. Benham AM; van Lith M; Sitia R; Braakman I Philos Trans R Soc Lond B Biol Sci; 2013 May; 368(1617):20110403. PubMed ID: 23530257 [TBL] [Abstract][Full Text] [Related]
6. A novel disulphide switch mechanism in Ero1alpha balances ER oxidation in human cells. Appenzeller-Herzog C; Riemer J; Christensen B; Sørensen ES; Ellgaard L EMBO J; 2008 Nov; 27(22):2977-87. PubMed ID: 18833192 [TBL] [Abstract][Full Text] [Related]
7. Different interaction modes for protein-disulfide isomerase (PDI) as an efficient regulator and a specific substrate of endoplasmic reticulum oxidoreductin-1α (Ero1α). Zhang L; Niu Y; Zhu L; Fang J; Wang X; Wang L; Wang CC J Biol Chem; 2014 Nov; 289(45):31188-99. PubMed ID: 25258311 [TBL] [Abstract][Full Text] [Related]
8. Conservation and diversity of the cellular disulfide bond formation pathways. Sevier CS; Kaiser CA Antioxid Redox Signal; 2006; 8(5-6):797-811. PubMed ID: 16771671 [TBL] [Abstract][Full Text] [Related]
9. Novel Roles of the Non-catalytic Elements of Yeast Protein-disulfide Isomerase in Its Interplay with Endoplasmic Reticulum Oxidoreductin 1. Niu Y; Zhang L; Yu J; Wang CC; Wang L J Biol Chem; 2016 Apr; 291(15):8283-94. PubMed ID: 26846856 [TBL] [Abstract][Full Text] [Related]
10. Molecular bases of cyclic and specific disulfide interchange between human ERO1alpha protein and protein-disulfide isomerase (PDI). Masui S; Vavassori S; Fagioli C; Sitia R; Inaba K J Biol Chem; 2011 May; 286(18):16261-71. PubMed ID: 21398518 [TBL] [Abstract][Full Text] [Related]
11. Role of the ERO1-PDI interaction in oxidative protein folding and disease. Shergalis AG; Hu S; Bankhead A; Neamati N Pharmacol Ther; 2020 Jun; 210():107525. PubMed ID: 32201313 [TBL] [Abstract][Full Text] [Related]
12. The oxidative folding of nascent polypeptides provides electrons for reductive reactions in the ER. Uegaki K; Tokunaga Y; Inoue M; Takashima S; Inaba K; Takeuchi K; Ushioda R; Nagata K Cell Rep; 2023 Jul; 42(7):112742. PubMed ID: 37421625 [TBL] [Abstract][Full Text] [Related]
13. Multiple ways to make disulfides. Bulleid NJ; Ellgaard L Trends Biochem Sci; 2011 Sep; 36(9):485-92. PubMed ID: 21778060 [TBL] [Abstract][Full Text] [Related]
14. Two conserved cysteine triads in human Ero1alpha cooperate for efficient disulfide bond formation in the endoplasmic reticulum. Bertoli G; Simmen T; Anelli T; Molteni SN; Fesce R; Sitia R J Biol Chem; 2004 Jul; 279(29):30047-52. PubMed ID: 15136577 [TBL] [Abstract][Full Text] [Related]
15. Regulation of plant ER oxidoreductin 1 (ERO1) activity for efficient oxidative protein folding. Matsusaki M; Okuda A; Matsuo K; Gekko K; Masuda T; Naruo Y; Hirose A; Kono K; Tsuchi Y; Urade R J Biol Chem; 2019 Dec; 294(49):18820-18835. PubMed ID: 31685660 [TBL] [Abstract][Full Text] [Related]
16. Dynamic retention of Ero1alpha and Ero1beta in the endoplasmic reticulum by interactions with PDI and ERp44. Otsu M; Bertoli G; Fagioli C; Guerini-Rocco E; Nerini-Molteni S; Ruffato E; Sitia R Antioxid Redox Signal; 2006; 8(3-4):274-82. PubMed ID: 16677073 [TBL] [Abstract][Full Text] [Related]
17. Structure, mechanism, and evolution of Ero1 family enzymes. Araki K; Inaba K Antioxid Redox Signal; 2012 Apr; 16(8):790-9. PubMed ID: 22145624 [TBL] [Abstract][Full Text] [Related]
18. Cooperative Protein Folding by Two Protein Thiol Disulfide Oxidoreductases and 1 in Soybean. Matsusaki M; Okuda A; Masuda T; Koishihara K; Mita R; Iwasaki K; Hara K; Naruo Y; Hirose A; Tsuchi Y; Urade R Plant Physiol; 2016 Feb; 170(2):774-89. PubMed ID: 26645455 [TBL] [Abstract][Full Text] [Related]
19. Unfolded cholera toxin is transferred to the ER membrane and released from protein disulfide isomerase upon oxidation by Ero1. Tsai B; Rapoport TA J Cell Biol; 2002 Oct; 159(2):207-16. PubMed ID: 12403808 [TBL] [Abstract][Full Text] [Related]
20. Glutathione- and non-glutathione-based oxidant control in the endoplasmic reticulum. Appenzeller-Herzog C J Cell Sci; 2011 Mar; 124(Pt 6):847-55. PubMed ID: 21378306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]