These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 22221099)

  • 1. Metabolism of cryptolepine and 2-fluorocryptolepine by aldehyde oxidase.
    Stell JG; Wheelhouse RT; Wright CW
    J Pharm Pharmacol; 2012 Feb; 64(2):237-43. PubMed ID: 22221099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent developments in naturally derived antimalarials: cryptolepine analogues.
    Wright CW
    J Pharm Pharmacol; 2007 Jun; 59(6):899-904. PubMed ID: 17637183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro and in vivo antiplasmodial activity of cryptolepine and related alkaloids from Cryptolepis sanguinolenta.
    Cimanga K; De Bruyne T; Pieters L; Vlietinck AJ; Turger CA
    J Nat Prod; 1997 Jul; 60(7):688-91. PubMed ID: 9249972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of guinea pig and rabbit hepatic aldehyde oxidase in oxidative in vitro metabolism of cinchona antimalarials.
    Beedham C; al-Tayib Y; Smith JA
    Drug Metab Dispos; 1992; 20(6):889-95. PubMed ID: 1362942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antiplasmodial activity of Cryptolepis sanguinolenta alkaloids from leaves and roots.
    Paulo A; Gomes ET; Steele J; Warhurst DC; Houghton PJ
    Planta Med; 2000 Feb; 66(1):30-4. PubMed ID: 10705730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryptolepis sanguinolenta: antimuscarinic properties of cryptolepine and the alkaloid fraction at M1, M2 and M3 receptors.
    Rauwald HW; Kober M; Mutschler E; Lambrecht G
    Planta Med; 1992 Dec; 58(6):486-8. PubMed ID: 1484884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the anti-malarial compound cryptolepine and its analogues in human lymphocytes and sperm in the Comet assay.
    Gopalan RC; Emerce E; Wright CW; Karahalil B; Karakaya AE; Anderson D
    Toxicol Lett; 2011 Dec; 207(3):322-5. PubMed ID: 21946165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro anti-malarial interaction and gametocytocidal activity of cryptolepine.
    Forkuo AD; Ansah C; Mensah KB; Annan K; Gyan B; Theron A; Mancama D; Wright CW
    Malar J; 2017 Dec; 16(1):496. PubMed ID: 29282057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of some cryptolepine analogues, assessment of their antimalarial and cytotoxic activities, and consideration of their antimalarial mode of action.
    Onyeibor O; Croft SL; Dodson HI; Feiz-Haddad M; Kendrick H; Millington NJ; Parapini S; Phillips RM; Seville S; Shnyder SD; Taramelli D; Wright CW
    J Med Chem; 2005 Apr; 48(7):2701-9. PubMed ID: 15801861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism of 5-aminoquinoline with liver cytosol enzyme.
    Banoo R; Matheison DW
    Indian J Biochem Biophys; 1993 Aug; 30(4):229-33. PubMed ID: 8276426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of some benzothiazoles, benzoxazoles, and quinolines as substrates and inhibitors of rabbit liver aldehyde oxidase.
    Gristwood W; Wilson K
    Xenobiotica; 1988 Aug; 18(8):949-54. PubMed ID: 3188574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenylacetaldehyde oxidation by freshly prepared and cryopreserved guinea pig liver slices: the role of aldehyde oxidase.
    Panoutsopoulos GI
    Int J Toxicol; 2005; 24(2):103-9. PubMed ID: 16036769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of aldehyde oxidase, xanthine oxidase, and aldehyde dehydrogenase on the oxidation of aromatic aldehydes.
    Panoutsopoulos GI; Kouretas D; Beedham C
    Chem Res Toxicol; 2004 Oct; 17(10):1368-76. PubMed ID: 15487898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antihyperglycemic activities of cryptolepine analogues: an ethnobotanical lead structure isolated from Cryptolepis sanguinolenta.
    Bierer DE; Dubenko LG; Zhang P; Lu Q; Imbach PA; Garofalo AW; Phuan PW; Fort DM; Litvak J; Gerber RE; Sloan B; Luo J; Cooper R; Reaven GM
    J Med Chem; 1998 Jul; 41(15):2754-64. PubMed ID: 9667966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryptolepine analogues containing basic aminoalkyl side-chains at C-11: synthesis, antiplasmodial activity, and cytotoxicity.
    Lavrado J; Paulo A; Gut J; Rosenthal PJ; Moreira R
    Bioorg Med Chem Lett; 2008 Feb; 18(4):1378-81. PubMed ID: 18207399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel ring oxidation of 4- or 5-substituted 2H-oxazole to corresponding 2-oxazolone catalyzed by cytosolic aldehyde oxidase.
    Arora VK; Philip T; Huang S; Shu YZ
    Drug Metab Dispos; 2012 Sep; 40(9):1668-76. PubMed ID: 22621803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The antimalarial and cytotoxic drug cryptolepine intercalates into DNA at cytosine-cytosine sites.
    Lisgarten JN; Coll M; Portugal J; Wright CW; Aymami J
    Nat Struct Biol; 2002 Jan; 9(1):57-60. PubMed ID: 11731803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro genotoxicity of the West African anti-malarial herbal Cryptolepis sanguinolenta and its major alkaloid cryptolepine.
    Ansah C; Khan A; Gooderham NJ
    Toxicology; 2005 Mar; 208(1):141-7. PubMed ID: 15664441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing ¹³C chemical shielding tensors in cryptolepine and two bromo-substituted analogs for antiplasmodial activity.
    Behzadi H; Olyai MR; van der Spoel D
    J Mol Model; 2011 Dec; 17(12):3289-97. PubMed ID: 21369934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative metabolic pathway of lenvatinib mediated by aldehyde oxidase.
    Inoue K; Mizuo H; Kawaguchi S; Fukuda K; Kusano K; Yoshimura T
    Drug Metab Dispos; 2014 Aug; 42(8):1326-33. PubMed ID: 24914245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.