BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 22221176)

  • 1. Degradation of polyamide nanofiltration and reverse osmosis membranes by hypochlorite.
    Do VT; Tang CY; Reinhard M; Leckie JO
    Environ Sci Technol; 2012 Jan; 46(2):852-9. PubMed ID: 22221176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of hypochlorous acid exposure on the rejection of salt, polyethylene glycols, boron and arsenic(V) by nanofiltration and reverse osmosis membranes.
    Do VT; Tang CY; Reinhard M; Leckie JO
    Water Res; 2012 Oct; 46(16):5217-23. PubMed ID: 22818949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of chlorine exposure conditions on physiochemical properties and performance of a polyamide membrane--mechanisms and implications.
    Do VT; Tang CY; Reinhard M; Leckie JO
    Environ Sci Technol; 2012 Dec; 46(24):13184-92. PubMed ID: 23214945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amide Link Scission in the Polyamide Active Layers of Thin-Film Composite Membranes upon Exposure to Free Chlorine: Kinetics and Mechanisms.
    Powell J; Luh J; Coronell O
    Environ Sci Technol; 2015 Oct; 49(20):12136-44. PubMed ID: 26394532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deterioration Mechanism of a Tertiary Polyamide Reverse Osmosis Membrane by Hypochlorite.
    Hashiba K; Nakai S; Ohno M; Nishijima W; Gotoh T; Iizawa T
    Environ Sci Technol; 2019 Aug; 53(15):9109-9117. PubMed ID: 31276395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Depth heterogeneity of fully aromatic polyamide active layers in reverse osmosis and nanofiltration membranes.
    Coronell O; Mariñas BJ; Cahill DG
    Environ Sci Technol; 2011 May; 45(10):4513-20. PubMed ID: 21488633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of chlorination condition and permeability of chlorine species on the chlorination of a polyamide membrane.
    Gu JE; Jun BM; Kwon YN
    Water Res; 2012 Oct; 46(16):5389-400. PubMed ID: 22877880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and effect of biofouling on polyamide reverse osmosis and nanofiltration membrane surfaces.
    Khan MM; Stewart PS; Moll DJ; Mickols WE; Nelson SE; Camper AK
    Biofouling; 2011 Feb; 27(2):173-83. PubMed ID: 21253926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bulk chlorine uptake by polyamide active layers of thin-film composite membranes upon exposure to free chlorine-kinetics, mechanisms, and modeling.
    Powell J; Luh J; Coronell O
    Environ Sci Technol; 2014; 48(5):2741-9. PubMed ID: 24506252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionization behavior, stoichiometry of association, and accessibility of functional groups in the active layers of reverse osmosis and nanofiltration membranes.
    Coronell O; González MI; Mariñas BJ; Cahill DG
    Environ Sci Technol; 2010 Sep; 44(17):6808-14. PubMed ID: 20701293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative structure-activity relationship (QSAR) analysis of surfactants influencing attachment of a Mycobacterium sp. to cellulose acetate and aromatic polyamide reverse osmosis membranes.
    Campbell P; Srinivasan R; Knoell T; Phipps D; Ishida K; Safarik J; Cormack T; Ridgway H
    Biotechnol Bioeng; 1999 Sep; 64(5):527-44. PubMed ID: 10404233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-motion-performance relationship of flux-enhanced reverse osmosis (RO) membranes composed of aromatic polyamide thin films.
    Kwak SY; Jung SG; Kim SH
    Environ Sci Technol; 2001 Nov; 35(21):4334-40. PubMed ID: 11718351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Permeability and selectivity of reverse osmosis membranes: correlation to swelling revisited.
    Dražević E; Košutić K; Freger V
    Water Res; 2014 Feb; 49():444-52. PubMed ID: 24216230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elemental Depth Profiling of Chlorinated Polyamide-Based Thin-Film Composite Membranes with Elastic Recoil Detection.
    Verbeke R; Bergmaier A; Eschbaumer S; Gómez V; Dollinger G; Vankelecom I
    Environ Sci Technol; 2019 Aug; 53(15):8640-8648. PubMed ID: 31286771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of pharmaceuticals onto isolated polyamide active layer of NF/RO membranes.
    Liu YL; Wang XM; Yang HW; Xie YF
    Chemosphere; 2018 Jun; 200():36-47. PubMed ID: 29471167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recycling of end-of-life reverse osmosis membranes for membrane biofilms reactors (MBfRs). Effect of chlorination on the membrane surface and gas permeability.
    Morón-López J; Nieto-Reyes L; Aguado S; El-Shehawy R; Molina S
    Chemosphere; 2019 Sep; 231():103-112. PubMed ID: 31128344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exposure dose and temperature of chlorine on deterioration of thin-film composite membranes for reverse osmosis and nanofiltration.
    An SA; Park CG; Lee JS; Cho SM; Woo YC; Kim HS
    Chemosphere; 2023 Aug; 333():138929. PubMed ID: 37207901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in physicochemical and transport properties of a reverse osmosis membrane exposed to chloraminated seawater.
    Valentino L; Renkens T; Maugin T; Croué JP; Mariñas BJ
    Environ Sci Technol; 2015 Feb; 49(4):2301-9. PubMed ID: 25590510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile Surface Modification of Polyamide Membranes Using UV-Photooxidation Improves Permeability and Reduces Natural Organic Matter Fouling.
    Rho H; Im SJ; Alrehaili O; Lee S; Jang A; Perreault F; Westerhoff P
    Environ Sci Technol; 2021 May; 55(10):6984-6994. PubMed ID: 33949853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capturing hormones and bisphenol A from water via sustained hydrogen bond driven sorption in polyamide microfiltration membranes.
    Han J; Meng S; Dong Y; Hu J; Gao W
    Water Res; 2013 Jan; 47(1):197-208. PubMed ID: 23127621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.