These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 22221176)
1. Degradation of polyamide nanofiltration and reverse osmosis membranes by hypochlorite. Do VT; Tang CY; Reinhard M; Leckie JO Environ Sci Technol; 2012 Jan; 46(2):852-9. PubMed ID: 22221176 [TBL] [Abstract][Full Text] [Related]
2. Effects of hypochlorous acid exposure on the rejection of salt, polyethylene glycols, boron and arsenic(V) by nanofiltration and reverse osmosis membranes. Do VT; Tang CY; Reinhard M; Leckie JO Water Res; 2012 Oct; 46(16):5217-23. PubMed ID: 22818949 [TBL] [Abstract][Full Text] [Related]
3. Effects of chlorine exposure conditions on physiochemical properties and performance of a polyamide membrane--mechanisms and implications. Do VT; Tang CY; Reinhard M; Leckie JO Environ Sci Technol; 2012 Dec; 46(24):13184-92. PubMed ID: 23214945 [TBL] [Abstract][Full Text] [Related]
4. Amide Link Scission in the Polyamide Active Layers of Thin-Film Composite Membranes upon Exposure to Free Chlorine: Kinetics and Mechanisms. Powell J; Luh J; Coronell O Environ Sci Technol; 2015 Oct; 49(20):12136-44. PubMed ID: 26394532 [TBL] [Abstract][Full Text] [Related]
5. Deterioration Mechanism of a Tertiary Polyamide Reverse Osmosis Membrane by Hypochlorite. Hashiba K; Nakai S; Ohno M; Nishijima W; Gotoh T; Iizawa T Environ Sci Technol; 2019 Aug; 53(15):9109-9117. PubMed ID: 31276395 [TBL] [Abstract][Full Text] [Related]
6. Depth heterogeneity of fully aromatic polyamide active layers in reverse osmosis and nanofiltration membranes. Coronell O; Mariñas BJ; Cahill DG Environ Sci Technol; 2011 May; 45(10):4513-20. PubMed ID: 21488633 [TBL] [Abstract][Full Text] [Related]
7. Effect of chlorination condition and permeability of chlorine species on the chlorination of a polyamide membrane. Gu JE; Jun BM; Kwon YN Water Res; 2012 Oct; 46(16):5389-400. PubMed ID: 22877880 [TBL] [Abstract][Full Text] [Related]
8. Characterization and effect of biofouling on polyamide reverse osmosis and nanofiltration membrane surfaces. Khan MM; Stewart PS; Moll DJ; Mickols WE; Nelson SE; Camper AK Biofouling; 2011 Feb; 27(2):173-83. PubMed ID: 21253926 [TBL] [Abstract][Full Text] [Related]
9. Bulk chlorine uptake by polyamide active layers of thin-film composite membranes upon exposure to free chlorine-kinetics, mechanisms, and modeling. Powell J; Luh J; Coronell O Environ Sci Technol; 2014; 48(5):2741-9. PubMed ID: 24506252 [TBL] [Abstract][Full Text] [Related]
10. Ionization behavior, stoichiometry of association, and accessibility of functional groups in the active layers of reverse osmosis and nanofiltration membranes. Coronell O; González MI; Mariñas BJ; Cahill DG Environ Sci Technol; 2010 Sep; 44(17):6808-14. PubMed ID: 20701293 [TBL] [Abstract][Full Text] [Related]
11. Quantitative structure-activity relationship (QSAR) analysis of surfactants influencing attachment of a Mycobacterium sp. to cellulose acetate and aromatic polyamide reverse osmosis membranes. Campbell P; Srinivasan R; Knoell T; Phipps D; Ishida K; Safarik J; Cormack T; Ridgway H Biotechnol Bioeng; 1999 Sep; 64(5):527-44. PubMed ID: 10404233 [TBL] [Abstract][Full Text] [Related]
12. Structure-motion-performance relationship of flux-enhanced reverse osmosis (RO) membranes composed of aromatic polyamide thin films. Kwak SY; Jung SG; Kim SH Environ Sci Technol; 2001 Nov; 35(21):4334-40. PubMed ID: 11718351 [TBL] [Abstract][Full Text] [Related]
13. Permeability and selectivity of reverse osmosis membranes: correlation to swelling revisited. Dražević E; Košutić K; Freger V Water Res; 2014 Feb; 49():444-52. PubMed ID: 24216230 [TBL] [Abstract][Full Text] [Related]
14. Elemental Depth Profiling of Chlorinated Polyamide-Based Thin-Film Composite Membranes with Elastic Recoil Detection. Verbeke R; Bergmaier A; Eschbaumer S; Gómez V; Dollinger G; Vankelecom I Environ Sci Technol; 2019 Aug; 53(15):8640-8648. PubMed ID: 31286771 [TBL] [Abstract][Full Text] [Related]
15. Adsorption of pharmaceuticals onto isolated polyamide active layer of NF/RO membranes. Liu YL; Wang XM; Yang HW; Xie YF Chemosphere; 2018 Jun; 200():36-47. PubMed ID: 29471167 [TBL] [Abstract][Full Text] [Related]
16. Recycling of end-of-life reverse osmosis membranes for membrane biofilms reactors (MBfRs). Effect of chlorination on the membrane surface and gas permeability. Morón-López J; Nieto-Reyes L; Aguado S; El-Shehawy R; Molina S Chemosphere; 2019 Sep; 231():103-112. PubMed ID: 31128344 [TBL] [Abstract][Full Text] [Related]
17. Exposure dose and temperature of chlorine on deterioration of thin-film composite membranes for reverse osmosis and nanofiltration. An SA; Park CG; Lee JS; Cho SM; Woo YC; Kim HS Chemosphere; 2023 Aug; 333():138929. PubMed ID: 37207901 [TBL] [Abstract][Full Text] [Related]
18. Changes in physicochemical and transport properties of a reverse osmosis membrane exposed to chloraminated seawater. Valentino L; Renkens T; Maugin T; Croué JP; Mariñas BJ Environ Sci Technol; 2015 Feb; 49(4):2301-9. PubMed ID: 25590510 [TBL] [Abstract][Full Text] [Related]
19. Facile Surface Modification of Polyamide Membranes Using UV-Photooxidation Improves Permeability and Reduces Natural Organic Matter Fouling. Rho H; Im SJ; Alrehaili O; Lee S; Jang A; Perreault F; Westerhoff P Environ Sci Technol; 2021 May; 55(10):6984-6994. PubMed ID: 33949853 [TBL] [Abstract][Full Text] [Related]
20. Capturing hormones and bisphenol A from water via sustained hydrogen bond driven sorption in polyamide microfiltration membranes. Han J; Meng S; Dong Y; Hu J; Gao W Water Res; 2013 Jan; 47(1):197-208. PubMed ID: 23127621 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]