These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 22222142)
1. Understanding the mechanism of heat stress tolerance caused by high trehalose accumulation in Saccharomyces cerevisiae using DNA microarray. Mahmud SA; Hirasawa T; Furusawa C; Yoshikawa K; Shimizu H J Biosci Bioeng; 2012 Apr; 113(4):526-8. PubMed ID: 22222142 [TBL] [Abstract][Full Text] [Related]
2. Acquisition of thermotolerant yeast Saccharomyces cerevisiae by breeding via stepwise adaptation. Satomura A; Katsuyama Y; Miura N; Kuroda K; Tomio A; Bamba T; Fukusaki E; Ueda M Biotechnol Prog; 2013; 29(5):1116-23. PubMed ID: 24115578 [TBL] [Abstract][Full Text] [Related]
3. [Construction and stress tolerance of trehalase mutant in Saccharomyces cerevisiae]. Lv Y; Xiao D; He D; Guo X Wei Sheng Wu Xue Bao; 2008 Oct; 48(10):1301-7. PubMed ID: 19160808 [TBL] [Abstract][Full Text] [Related]
4. Molecular biology of trehalose and the trehalases in the yeast Saccharomyces cerevisiae. Nwaka S; Holzer H Prog Nucleic Acid Res Mol Biol; 1998; 58():197-237. PubMed ID: 9308367 [TBL] [Abstract][Full Text] [Related]
5. Changes of trehalose content and expression of relative genes during the bioethanol fermentation by Saccharomyces cerevisiae. Yi C; Wang F; Dong S; Li H Can J Microbiol; 2016 Oct; 62(10):827-835. PubMed ID: 27510429 [TBL] [Abstract][Full Text] [Related]
6. Trehalose promotes the survival of Saccharomyces cerevisiae during lethal ethanol stress, but does not influence growth under sublethal ethanol stress. Bandara A; Fraser S; Chambers PJ; Stanley GA FEMS Yeast Res; 2009 Dec; 9(8):1208-16. PubMed ID: 19799639 [TBL] [Abstract][Full Text] [Related]
7. Investigating the underlying mechanism of Saccharomyces cerevisiae in response to ethanol stress employing RNA-seq analysis. Li R; Xiong G; Yuan S; Wu Z; Miao Y; Weng P World J Microbiol Biotechnol; 2017 Nov; 33(11):206. PubMed ID: 29101531 [TBL] [Abstract][Full Text] [Related]
9. The trehalose protective mechanism during thermal stress in Saccharomyces cerevisiae: the roles of Ath1 and Agt1. Magalhães RSS; Popova B; Braus GH; Outeiro TF; Eleutherio ECA FEMS Yeast Res; 2018 Sep; 18(6):. PubMed ID: 30007297 [TBL] [Abstract][Full Text] [Related]
10. The high general stress resistance of the Saccharomyces cerevisiae fil1 adenylate cyclase mutant (Cyr1Lys1682) is only partially dependent on trehalose, Hsp104 and overexpression of Msn2/4-regulated genes. Versele M; Thevelein JM; Van Dijck P Yeast; 2004 Jan; 21(1):75-86. PubMed ID: 14745784 [TBL] [Abstract][Full Text] [Related]
11. Protective role of trehalose during heat stress in Saccharomyces cerevisiae. Eleutherio EC; Araujo PS; Panek AD Cryobiology; 1993 Dec; 30(6):591-6. PubMed ID: 8306706 [TBL] [Abstract][Full Text] [Related]
12. Activation of the protein kinase C1 pathway upon continuous heat stress in Saccharomyces cerevisiae is triggered by an intracellular increase in osmolarity due to trehalose accumulation. Mensonides FI; Brul S; Klis FM; Hellingwerf KJ; Teixeira de Mattos MJ Appl Environ Microbiol; 2005 Aug; 71(8):4531-8. PubMed ID: 16085846 [TBL] [Abstract][Full Text] [Related]
13. Analysis of adaptation to high ethanol concentration in Saccharomyces cerevisiae using DNA microarray. Dinh TN; Nagahisa K; Yoshikawa K; Hirasawa T; Furusawa C; Shimizu H Bioprocess Biosyst Eng; 2009 Aug; 32(5):681-8. PubMed ID: 19125301 [TBL] [Abstract][Full Text] [Related]
14. Characterization and gene expression profiles of thermotolerant Saccharomyces cerevisiae isolates from Thai fruits. Auesukaree C; Koedrith P; Saenpayavai P; Asvarak T; Benjaphokee S; Sugiyama M; Kaneko Y; Harashima S; Boonchird C J Biosci Bioeng; 2012 Aug; 114(2):144-9. PubMed ID: 22579450 [TBL] [Abstract][Full Text] [Related]
15. Extracting the hidden features in saline osmotic tolerance in Saccharomyces cerevisiae from DNA microarray data using the self-organizing map: biosynthesis of amino acids. Pandey G; Yoshikawa K; Hirasawa T; Nagahisa K; Katakura Y; Furusawa C; Shimizu H; Shioya S Appl Microbiol Biotechnol; 2007 May; 75(2):415-26. PubMed ID: 17262206 [TBL] [Abstract][Full Text] [Related]
16. Acquisition of thermotolerance in Saccharomyces cerevisiae without heat shock protein hsp 104 and in the absence of protein synthesis. De Virgilio C; Piper P; Boller T; Wiemken A FEBS Lett; 1991 Aug; 288(1-2):86-90. PubMed ID: 1831771 [TBL] [Abstract][Full Text] [Related]
17. Heat shock causes oxidative stress and induces a variety of cell rescue proteins in Saccharomyces cerevisiae KNU5377. Kim IS; Moon HY; Yun HS; Jin I J Microbiol; 2006 Oct; 44(5):492-501. PubMed ID: 17082742 [TBL] [Abstract][Full Text] [Related]
18. Construction of Saccharomyces cerevisiae strains that accumulate relatively low concentrations of trehalose, and their application in testing the contribution of the disaccharide to stress tolerance. Attfield PV; Raman A; Northcott CJ FEMS Microbiol Lett; 1992 Jul; 73(3):271-6. PubMed ID: 1426991 [TBL] [Abstract][Full Text] [Related]
19. Acid trehalase is involved in intracellular trehalose mobilization during postdiauxic growth and severe saline stress in Saccharomyces cerevisiae. Garre E; Pérez-Torrado R; Gimeno-Alcañiz JV; Matallana E FEMS Yeast Res; 2009 Feb; 9(1):52-62. PubMed ID: 19016884 [TBL] [Abstract][Full Text] [Related]
20. The correlative evidence suggesting that trehalose stabilizes membrane structure in the yeast Saccharomyces cerevisiae. Iwahashi H; Obuchi K; Fujii S; Komatsu Y Cell Mol Biol (Noisy-le-grand); 1995 Sep; 41(6):763-9. PubMed ID: 8535169 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]