These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 22222297)

  • 1. Modelling tissue electrophysiology with multiple cell types: applications of the extended bidomain framework.
    Corrias A; Pathmanathan P; Gavaghan DJ; Buist ML
    Integr Biol (Camb); 2012 Feb; 4(2):192-201. PubMed ID: 22222297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling gastrointestinal bioelectric activity.
    Pullan A; Cheng L; Yassi R; Buist M
    Prog Biophys Mol Biol; 2004; 85(2-3):523-50. PubMed ID: 15142760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling the effect of gap junctions on tissue-level cardiac electrophysiology.
    Bruce D; Pathmanathan P; Whiteley JP
    Bull Math Biol; 2014 Feb; 76(2):431-54. PubMed ID: 24338526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso.
    Sundnes J; Lines GT; Tveito A
    Math Biosci; 2005 Apr; 194(2):233-48. PubMed ID: 15854678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forward Euler stability of the bidomain model of cardiac tissue.
    Puwal S; Roth BJ
    IEEE Trans Biomed Eng; 2007 May; 54(5):951-3. PubMed ID: 17518295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulating the electrical behavior of cardiac tissue using the bidomain model.
    Henriquez CS
    Crit Rev Biomed Eng; 1993; 21(1):1-77. PubMed ID: 8365198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the computational complexity of the bidomain and the monodomain models of electrophysiology.
    Sundnes J; Nielsen BF; Mardal KA; Cai X; Lines GT; Tveito A
    Ann Biomed Eng; 2006 Jul; 34(7):1088-97. PubMed ID: 16773461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An extended bidomain framework incorporating multiple cell types.
    Buist ML; Poh YC
    Biophys J; 2010 Jul; 99(1):13-8. PubMed ID: 20655828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anatomically realistic multiscale models of normal and abnormal gastrointestinal electrical activity.
    Cheng LK; Komuro R; Austin TM; Buist ML; Pullan AJ
    World J Gastroenterol; 2007 Mar; 13(9):1378-83. PubMed ID: 17457969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of the bidomain conductivity parameters of cardiac tissue from extracellular potential distributions initiated by point stimulation.
    Graham LS; Kilpatrick D
    Ann Biomed Eng; 2010 Dec; 38(12):3630-48. PubMed ID: 20628818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A quantitative model of gastric smooth muscle cellular activation.
    Corrias A; Buist ML
    Ann Biomed Eng; 2007 Sep; 35(9):1595-607. PubMed ID: 17486452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards accurate numerical method for monodomain models using a realistic heart geometry.
    Belhamadia Y; Fortin A; Bourgault Y
    Math Biosci; 2009 Aug; 220(2):89-101. PubMed ID: 19447119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Models of cardiac tissue electrophysiology: progress, challenges and open questions.
    Clayton RH; Bernus O; Cherry EM; Dierckx H; Fenton FH; Mirabella L; Panfilov AV; Sachse FB; Seemann G; Zhang H
    Prog Biophys Mol Biol; 2011 Jan; 104(1-3):22-48. PubMed ID: 20553746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deriving macroscopic myocardial conductivities by homogenization of microscopic models.
    Hand PE; Griffith BE; Peskin CS
    Bull Math Biol; 2009 Oct; 71(7):1707-26. PubMed ID: 19412638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decoupled time-marching schemes in computational cardiac electrophysiology and ECG numerical simulation.
    Fernández MA; Zemzemi N
    Math Biosci; 2010 Jul; 226(1):58-75. PubMed ID: 20416327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of intestinal smooth muscle cells by interstitial cells of Cajal in simulation studies.
    Sperelakis N; Daniel EE
    Am J Physiol Gastrointest Liver Physiol; 2004 Feb; 286(2):G234-43. PubMed ID: 14715518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An evaluation of some assumptions underpinning the bidomain equations of electrophysiology.
    Whiteley JP
    Math Med Biol; 2020 May; 37(2):262-302. PubMed ID: 31680135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale modeling of gastrointestinal electrophysiology and experimental validation.
    Du P; O'Grady G; Davidson JB; Cheng LK; Pullan AJ
    Crit Rev Biomed Eng; 2010; 38(3):225-54. PubMed ID: 21133835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simulation study of the reaction of human heart to biphasic electrical shocks.
    Popp LM; Seemann G; Dössel O
    BMC Cardiovasc Disord; 2004 Jun; 4():9. PubMed ID: 15212691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiac propagation simulation.
    Pollard AE; Hooke N; Henriquez CS
    Crit Rev Biomed Eng; 1992; 20(3-4):171-210. PubMed ID: 1478091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.